← 返回
温度动态下大规模绿色氢能系统的运行灵活性
Utility-Scale Green Hydrogen System's Operational Flexibility under Temperature Dynamics
| 作者 | Aaquib Firdous · Chandra Prakash Barala · Parul Mathuria · Rohit Bhakar · Mohammad Shahidehpour |
| 期刊 | IEEE Transactions on Industry Applications |
| 出版日期 | 2025年6月 |
| 技术分类 | 氢能与燃料电池 |
| 技术标签 | 地面光伏电站 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 电网连接型氢系统 质子交换膜制氢电解槽 多余可再生能源 温度动态 多物理建模 |
语言:
中文摘要
并网公用事业规模制氢系统(USHSs)需要增强运行灵活性,以确保可持续的氢气生产。质子交换膜(PEM)制氢电解槽(HEs)具有更高的运行灵活性,能够在更低和更宽的负载范围内运行,以消纳过剩可再生能源(SRE)。然而,在模块化设置中,温度变化会显著影响模块间和模块内制氢电解槽的负载,进而影响其运行灵活性。大多数研究要么忽略温度影响,要么将其简单地建模为常数,而忽视了制氢电解槽热力学特性和环境温度的变化。此外,这些公用事业规模制氢系统主要在额定容量附近运行,以满足下游的氢气需求。消纳过剩可再生能源的需求将迫使制氢电解槽在更高负载下运行,这会增加调节温度所需的辅助功率,使得利用过剩可再生能源进行制氢的经济性降低。因此,为了理解制氢电解槽温度动态特性与过剩可再生能源利用之间的相互作用,本研究提出了一种多物理场制氢电解槽建模方法,以解决公用事业规模制氢系统中制氢电解槽热力学的复杂性问题。所提出的模型考虑了制氢电解槽温度相对于环境条件、低负载运行、长时间运行、可变效率、模块化以及下游运行的动态特性,以准确反映实际运行动态。通过对各种制氢电解槽运行情况的分析,结果表明,温度动态特性会调节制氢电解槽的负载,限制其低负载运行,以避免启动和进行温度管理,从而为新兴的低碳并网公用事业规模制氢系统提供精确的制氢电解槽运行灵活性。
English Abstract
Grid-connected utility-scale hydrogen systems (USHSs) require enhanced operational flexibility to ensure sustainable hydrogen production. Proton exchange membrane (PEM) Hydrogen Electrolysers (HEs) exhibit greater operational flexibility, allowing lower and extended loading ranges to accommodate surplus renewable energy (SRE). However, in a modular setup, temperature variations significantly influence inter and intra-modular HE loadings, affecting their operational flexibility. Most studies either disregard temperature effects or model them simplistically as constants, neglecting variations in HE thermodynamics and ambient temperatures. Furthermore, these USHSs primarily operate near their rated capacities to satisfy downstream hydrogen demands. The need to utilize SRE will force HEs to operate under higher loadings, increasing auxiliary power requirements to regulate temperature, rendering SRE operations economically less attractive. Therefore, to understand the interplay between HE temperature dynamics and SRE utilization, this study proposes a multi-physics HE modelling, addressing the complexities of HE thermodynamics in USHSs. The proposed model considers HE temperature dynamics w.r.t. ambient conditions, lower loadings, extended operations, variable efficiency, modularization, and downstream operations to reflect the exact operational dynamics. Analyzing various HE operations, the results indicate that temperature dynamics modulates HE loadings, limiting its low-load operations to avoid startups and temperature management, providing precise HE operational flexibility in emerging low-carbon grid-connected USHSs.
S
SunView 深度解读
该研究对阳光电源光储氢一体化系统具有重要应用价值。PEM电解槽温度动态特性分析可直接应用于ST储能系统与SG逆变器的协同控制策略:通过iSolarCloud平台实时监测电解槽温度状态,优化PowerTitan储能系统的功率调度曲线,避免温度波动导致的制氢效率下降。研究揭示的温度-功率耦合约束可融入阳光电源1500V光伏系统的MPPT算法,实现光伏发电-储能缓冲-制氢负载的三级协调控制。该温度感知调度策略可增强地面光伏电站配套制氢系统的灵活性,提升可再生能源消纳能力,为阳光电源拓展绿氢业务提供核心技术支撑。