← 返回
风电变流技术
★ 5.0
考虑次/超同步振荡稳定约束的风电并网容量分析
Wind Power Integration Capacity Analysis Considering Sub/Super-Synchronous Oscillation Stability Constraint
| 作者 | Ying Zhan · Linguang Wang · Xiaorong Xie |
| 期刊 | IEEE Transactions on Industry Applications |
| 出版日期 | 2024年10月 |
| 技术分类 | 风电变流技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 次/超同步振荡 风电接入容量 安全区域 概率稳定指标 机会约束规划模型 |
语言:
中文摘要
风力发电并网电力系统中新兴的次/超同步振荡(SSO)问题对系统稳定性构成了巨大威胁。为了从源头上避免SSO问题,在系统规划阶段确定最大允许的风电并网容量具有重要意义。为此,本文首先提出一种模型 - 数据混合驱动的方法来构建SSO安全域(SR),该方法精度高且适用于大规模系统。然后,基于该安全域,开发了SSO概率稳定指标,以评估系统运行条件变化下的SSO风险。接着,以SSO概率指标作为稳定约束,建立机会约束规划模型以获取最大风电并网容量,并提出改进的粒子群优化算法来求解该模型。最后,将所提方法应用于单风电场系统和实际的多风电场系统。构建的SSO安全域与现有数据驱动方法相比,分类精度提高了5%以上。获得了最大风电并网容量的全局最优解,与现有方法相比,总耗时减少了40倍以上。从而充分证明了所提方法的有效性。
English Abstract
The emerging sub/super-synchronous oscillation (SSO) issue in wind power integrated power systems is posing a great threat to system stability. To avoid SSO issues from the beginning, it is of great significance to determine the maximum admissible wind power integration capacity at the system planning stage. To achieve this purpose, the paper first proposes a model-data hybrid-driven method for constructing the security region (SR) of SSO, which is of high precision and suitable for large-scale systems. Then based on the SR, the SSO probability stability index is developed to evaluate SSO risk under variable system operating conditions. Next, with the SSO probability index as a stability constraint, the chance-constraint planning model is established to obtain the maximum wind power integration capacity and the improved particle swarm optimization algorithm is proposed to solve the model. Finally, the proposed method is applied on a single-wind-farm system and a practical multiple-wind-farms system. The SR of SSO is built with the classification accuracy improved by more than 5% compared to existing data-driven methods. The global optimal solution for the maximum wind power integration capacity is obtained, and the total consumed time is reduced by over 40 times compared to the existing method. Thus the effectiveness of the proposed method is fully demonstrated.
S
SunView 深度解读
该研究对阳光电源的风电变流器和储能变流器产品线具有重要参考价值。研究提出的SSO稳定性分析方法可直接应用于我司ST系列储能变流器和风电变流器的控制策略优化,特别是在大规模风电场并网场景中。通过将阻抗建模和频域扫描法集成到变流器控制系统中,可提升产品在复杂电网环境下的稳定性表现。这对完善我司构网型(GFM)控制技术、提高产品在弱电网条件下的适应性具有重要指导意义。建议在下一代风电和储能变流器中植入该振荡抑制算法,提升产品竞争力。