← 返回
储能系统技术 ★ 5.0

长距离深水交流输电系统在海上风电集成与浮式生产储油卸油装置中的优化设计与运行

Optimal Design and Operation of Long-Distance Deep-Water HVAC Transmission for Offshore WECS Integration With FPSO Unit

语言:

中文摘要

本文评估了将海上风力发电系统(WECS)集成到浮式生产储卸油装置(FPSO)中的技术可行性。该风力发电系统位于离巴西大陆较近的位置,需要一条150公里长的海底脐带电缆来实现与浮式生产储卸油装置的集成。由于水深较大,必须采用高压交流(HVAC)输电,这带来了如功率损耗以及电缆产生大量容性无功电流等挑战。本文提出了一种全面应对这些挑战的方法。首先,根据载流量和短路情况下的最大电流来确定脐带电缆段的规格。然后采用潮流优化方法来确定使功率损耗最小的最佳输电电压。优化结果根据有功功率确定了风力发电系统背靠背变流器必须吸收的无功功率。这种关系以查找表控制的形式呈现,通过调整风力发电系统功率控制单元中的无功功率参考值来确保高效运行。采用这种方法,风力发电系统的背靠背变流器可补偿脐带电缆产生的部分无功功率,减少了对诸如并联电抗器或无功补偿变电站等额外基础设施的需求。对系统的每个组件进行建模,并使用MATLAB/Simulink进行完整仿真,以验证该方案的可行性。结果表明,通过将风力发电系统与浮式生产储卸油装置集成,该方法在提高系统效率的同时,能显著减少油气勘探过程中的二氧化碳排放。

English Abstract

This paper evaluates the technical feasibility of integrating an offshore wind energy conversion system (WECS) into a floating production storage and offloading (FPSO) unit. The WECS is situated closer to the Brazilian mainland, requiring a 150 km long subsea umbilical cable for the integration with the FPSO unit. High voltage alternating current (HVAC) transmission is mandatory due to the substantial water depths, introducing challenges such as power losses and significant reactive capacitive current generated by the cable. This paper proposes a comprehensive approach to dealing with these challenges. Firstly, the umbilical cable section is sized based on ampacity and maximum current under short-circuit conditions. A power flow optimization is thus employed to determine the optimal transmission voltage that minimizes power losses. The optimization results define the reactive power that the back-to-back converter of the WECS must absorb based on the active power. This relationship is represented as a lookup table control, which ensures efficient operation by adjusting the reactive power reference in the WECS power control unit. Using this approach, the WECS back-to-back converter compensates for a portion of the reactive power generated by the umbilical, reducing the need for additional infrastructure such as shunt reactors or reactive compensation substations. Each component of the system is modeled, and a complete simulation is conducted using MATLAB/Simulink to validate the proposal. The results demonstrate the effectiveness of this approach in enhancing system efficiency while significantly reducing carbon dioxide emissions during oil and gas exploration through the integration of WECS with FPSO units.
S

SunView 深度解读

该长距离深水HVAC输电优化技术对阳光电源海上储能系统集成具有重要应用价值。文中多目标优化模型与无功补偿策略可直接应用于ST系列储能变流器的海上场景配置,优化PowerTitan系统在FPSO等海洋平台的并网性能。长距离传输的稳定性控制经验可增强构网型GFM控制算法在弱电网环境下的鲁棒性,提升海上风储一体化系统的电能质量。研究中的效率-稳定性-经济性综合优化方法为阳光电源开发海洋新能源ESS集成方案提供设计依据,支撑海上油气平台绿色供电业务拓展,契合公司在极端环境储能应用的技术布局。