← 返回
光伏发电技术
★ 5.0
SolarFormer++:用于太阳能光伏剖面分析与遮挡定位以减缓退化的多尺度Transformer
SolarFormer++: Multi-scale Transformer for Solar PV Profiling and Obstruction Localization for Degradation Mitigation
| 作者 | Esteban Duran · Minh Tran · Malachi Massey · Adrian Gracia · Taisei Hanyu · Anh Tran |
| 期刊 | IEEE Transactions on Industry Applications |
| 出版日期 | 2025年5月 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 光伏能源 太阳能板分析 De - Solar数据集 SolarFormer++模型 遮挡检测 |
语言:
中文摘要
随着气候变化的加速,全球向清洁和可持续能源转型的需求日益迫切。光伏(PV)能源因其可靠性和易于安装而成为首选。然而,对光伏系统进行有效管理需要(i)对太阳能光伏装置进行精确且实时的定位,以实现全球概况分析;(ii)准确评估实时输出电压和系统性能。为应对这些挑战,我们提出了一种双途径解决方案,利用卫星和无人机图像对太阳能电池板进行全面分析。我们的方法首先从卫星图像中分割并绘制太阳能电池板的地图,从而深入了解其地理分布和规模。同时,该方法分析无人机(UAV)图像,以防止因太阳能电池板表面的障碍物(如树叶、树枝、灰尘和鸟粪)导致的性能下降,同时评估太阳能光伏系统的整体状况。为了进一步推动该领域的发展,我们推出了De - Solar数据集,这是一个专注于多种障碍物类型的高质量标记太阳能电池板图像的新集合,旨在训练计算机视觉模型。由于天气条件、屋顶纹理、障碍物类型和地面采样距离(GSD)的差异,太阳能电池板识别面临着独特的挑战。为应对这些复杂情况,我们提出了SolarFormer++,这是一种最先进的模型,具有多尺度Transformer编码器和掩码注意力Transformer解码器。该模型利用低级图像特征,并采用实例查询机制,以加强太阳能光伏装置的定位和精确的障碍物检测。为了进行全球尺度的太阳能光伏概况分析,我们在多个不同的公共数据集上对SolarFormer++进行评估,这些数据集包括GGE(法国)、IGN(法国)和USGS(美国加利福尼亚州),涵盖了不同的GSD以进行全球尺度分析。为了检测障碍物以防止性能下降并评估性能,我们在新推出的De - Solar数据集上对所提出的SolarFormer++进行基准测试。实验结果一致表明,SolarFormer++的性能优于现有方法。
English Abstract
As climate change accelerates, the global transition to clean and sustainable energy is increasingly urgent. Photovoltaic (PV) energy is a preferred choice due to its reliability and ease of installation. However, effective management of PV systems requires (i) precise and real-time localization of solar PV installations for global profiling and (ii) accurate assessments of real-time output voltage and system performance. To address these challenges, we propose a dual-approach solution for comprehensive solar panel analysis leveraging both satellite and UAV imagery. Our method first segments and maps solar panels from satellite images, providing critical insights into their geographic distribution and size. Simultaneously, it analyzes unmanned aerial vehicle (UAV) imagery to prevent degradation caused by obstructions on the solar panel surface, such as leaves, branches, dust, and bird droppings, while also assessing the overall condition of solar PV systems. To further advance the field, we introduce the De-Solar dataset, a novel, high-quality collection of labeled solar panel images focused on diverse obstructions types, designed to train computer vision models. Solar panel identification presents unique challenges due to variations in weather conditions, roof textures, obstruction types, and Ground Sampling Distance (GSD). To address these complexities, we propose SolarFormer++, a state-of-the-art model featuring a multi-scale Transformer encoder and a masked-attention Transformer decoder. The proposed model leverages low-level image features and employs an instance query mechanism to enhance localization of solar PV installations and precise obstruction detection. For global-scale solar PV profiling, we evaluate SolarFormer++ across diverse public datasets, including GGE (France), IGN (France), and USGS (California, USA), spanning varying GSDs for global-scale analysis. To detect obstructions in order to prevent degradation and assess performance, we benchmark the proposed SolarFormer++ on our newly introduced De-Solar dataset. Experimental results consistently demonstrate that SolarFormer++ outperforms existing methods.
S
SunView 深度解读
该多尺度Transformer光伏故障诊断技术对阳光电源智能运维体系具有重要应用价值。可直接集成至iSolarCloud云平台,增强SG系列逆变器的智能诊断能力:通过像素级遮挡定位与退化模式识别,优化MPPT算法在局部阴影条件下的功率追踪策略;结合组串级监控数据,实现预测性维护,提前识别热斑、PID等退化风险。该深度学习方法可与现有IV曲线诊断技术协同,构建多维度故障检测体系,显著提升大型光伏电站的发电效率与资产管理水平,降低运维成本,支撑阳光电源从设备供应商向智慧能源解决方案提供商的战略转型。