← 返回
电力电子设备存在下低压配电系统中电弧/火花放电现象的表征
Characterization of Arc/Spark Discharge Phenomena in Low Voltage Distribution Systems in the Presence of Power Electronic Devices
| 作者 | Ratnakar Nutenki · Aurobinda Routray · Ashok Kumar Pradhan |
| 期刊 | IEEE Transactions on Industry Applications |
| 出版日期 | 2025年8月 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | 故障诊断 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 电弧故障检测 低压配电系统 非线性等效电路模型 L - 矩统计 特征提取 |
语言:
中文摘要
现代电力负载日益复杂,对传统的电弧故障检测方法构成了挑战,这需要采用复杂的方法来进行可靠识别。本研究探讨了低压配电系统中的电弧/火花放电行为,尤其关注嵌入了电力电子元件的现代家用电器对其产生的影响。通过实验观察并结合电压 - 电流滞后和能量平衡等物理原理,建立了电弧/火花放电的非线性等效电路模型。该模型纳入了动态参数,如电弧时间常数和碳桥电阻,以分析它们对放电特性的影响。为了分析实际负载条件下的电弧放电行为,对包括变阻器、搅拌机、笔记本电脑、微波炉和吸尘器等具有代表性的电器进行了大量实验室实验。为了对电弧和非电弧状态进行特征描述和区分,采用 L - 矩统计方法提取时间特征,该方法对异常值具有更强的鲁棒性,并且能够捕捉到高阶分布行为。所提取的特征在不同负载类型下表现出很强的区分能力,从而实现了可靠的电弧故障检测。这一集成的建模与特征提取框架有助于开发适用于现代低压电气环境的更安全、更可靠的电弧检测系统。
English Abstract
The increasing complexity of modern electrical loads challenges traditional arc fault detection methods, which require sophisticated approaches for reliable identification. This study investigates the arc/spark discharge behavior in low-voltage distribution systems, particularly under the influence of modern domestic appliances embedded with power electronic components. A nonlinear equivalent circuit model of arc/spark discharge was developed, empirically derived from experimental observations and guided by physical principles such as voltage-current hysteresis and energy balance considerations. The model incorporates dynamic parameters, including the arc time constant and carbon bridge resistance, to analyze their influence on the discharge characteristics. Extensive laboratory experiments involving representative appliances, such as rheostats, mixers, laptops, microwave ovens, and vacuum cleaners, were performed to analyze the arc discharge behavior under realistic load conditions. To characterize and differentiate arcs from non-arc conditions, temporal features were extracted using L-moment statistics, which offer improved resilience to outliers and capture higher-order distributional behavior. The resulting features demonstrate strong discriminatory capability across load types, enabling robust arc fault detection. This integrated modeling and feature-extraction framework contributes to the development of safer and more reliable arc detection systems suited to modern low-voltage electrical environments.
S
SunView 深度解读
该电弧故障检测技术对阳光电源多条产品线具有重要应用价值。在ST储能系统中,电力电子变流器的高频开关特性易与故障电弧混淆,研究揭示的电弧高频特征与波形畸变规律可优化PowerTitan系统的直流侧电弧检测算法,降低误报率。在SG光伏逆变器中,可改进直流拉弧保护功能,提升1500V高压系统安全性。在新能源汽车业务中,车载OBC和充电桩的电力电子环境复杂,该研究提供的电弧表征方法可增强充电连接故障诊断能力。建议结合iSolarCloud平台,将电弧特征识别算法集成到智能运维系统,实现预测性维护,提升阳光电源产品的本质安全水平与市场竞争力。