← 返回
光伏发电技术
★ 5.0
基于联合分布建模的分布式光伏超短期功率概率预测方法
Ultra-short-term Power Probabilistic Forecasting Method for Distributed Photovoltaic based on Joint Distribution Modeling
| 作者 | Wenqiu Wang · Yuqing Wang · Fei Wang · Fei Xu · Guanbin Feng · Zhao Zhen |
| 期刊 | IEEE Transactions on Industry Applications |
| 出版日期 | 2025年7月 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 分布式光伏 超短期功率 概率预测 Transformer模型 Copula函数 |
语言:
中文摘要
分布式光伏(DPV)超短期功率的准确概率预测对于配电网的运行与调度具有重要意义。针对现有研究未能有效考虑功率预测误差与波动特性之间依赖关系的问题,本文提出一种基于联合分布建模的分布式光伏超短期功率概率预测方法。该方法借鉴大语言模型(LLM)的设计理念,构建了一个能在小样本条件下出色完成时间序列确定性点预测的Transformer模型,为概率预测提供高质量的数据支撑。同时,为了更精细地挖掘功率预测误差与波动特性之间的关系,设计了利用自编码器(AE)提取和度量的深度不确定性,以有效支持功率波动模式识别。最后,基于Copula函数拟合不同波动模式下点预测值与误差之间的联合概率分布,并通过逆变换得到与点预测值对应的预测误差上下限,形成预测区间。通过实际数据集验证了所提方法的优越性。
English Abstract
Accurate probabilistic forecasting of distributed photovoltaic (DPV) ultra-short-term power is of great significance for the operation and scheduling of distribution networks. To address the issue that existing research works don't effectively consider the dependency between power forecasting errors and the fluctuation characteristics, this paper proposes a probabilistic forecasting method for ultra-short-term DPV power based on joint distribution modeling. In this method, drawing inspiration from the design concepts of Large Language Models (LLM), a Transformer model is constructed to excel in deterministic point forecasting for time series under few-shot conditions, providing high-quality data support for probabilistic forecasting. Meanwhile, to achieve the finer mining of the relationship between power forecasting errors and fluctuation characteristics, the deep uncertainty extracted and measured with Autoencoder (AE) is designed to support effectively recognition of power fluctuation patterns. Finally, the joint probability distribution between point forecasting values and errors under different fluctuation patterns is fitted based on Copula function, and the upper and lower limits of the forecasting errors corresponding to the point forecasting values are obtained through inverse transformation, forming the forecasting interval. The superiority of the proposed method is validated through real datasets
S
SunView 深度解读
该分布式光伏超短期功率概率预测技术对阳光电源iSolarCloud智能运维平台和SG系列光伏逆变器具有重要应用价值。联合分布建模方法可集成到云平台的预测性维护模块,通过Copula函数刻画气象-功率非线性关联,为分布式光伏电站提供15分钟至4小时的概率预测区间,显著提升调度决策可靠性。该技术可优化SG逆变器的MPPT算法,根据概率预测结果动态调整功率爬坡速率,配合ST储能系统实现更精准的充放电策略。对于PowerTitan大型储能系统,概率预测信息可提升源网荷储协同控制精度,降低配电网波动风险,特别适用于高比例分布式光伏接入场景的智能调度与经济运行优化。