← 返回
风电变流技术 ★ 5.0

基于非线性混沌哈里斯鹰优化整定广义幂指数趋近律终端滑模控制的旋转式风力机变桨控制

Rotary-Actuated Wind Turbine Pitch Control Using Nonlinear-Based Chaotic Harris Hawks Optimization Tuned Generalized Power Exponential Rate Reaching Law Terminal Sliding Mode Controller

语言:

中文摘要

本研究针对叶片变桨控制提出了一种先进的终端滑模控制(TSMC)策略,旨在减轻周期性气动载荷并稳定额定功率,研究对象为配备旋转电液驱动装置的63米叶片水平轴风力发电机(HAWT)。该TSMC采用广义幂指数速率趋近律进行设计,称为GPERRL - TSMC。研究运用叶素动量理论对系统动力学进行建模。最终证明,所提出的GPERRL - TSMC能够同时提升暂态性能,并减少抖振的不利影响。首先,利用哈里斯鹰优化算法(HHO)对该控制器的自由参数进行优化,进一步改进了该控制器设计,称为HHO - GPERRL - TSMC。然后,采用HHO的一种最新变体(本文称为NCM - HHO,即包含变异机制的基于非线性的混沌HHO)对GPERRL - TSMC设计进行了进一步改进。基于NCM - HHO的GPERRL - TSMC在此称为NCM - HHO - GPERRL - TSMC。大量性能评估表明,针对多种风况,本文提出的GPERRL - TSMC的三种变体均能显著优于现有的GPERRL - SMC,其中NCM - HHO - GPERRL - TSMC始终表现最佳。与现有报道的GPERRL - SMC相比,所提出的GPERRL - TSMC、HHO - GPERRL - TSMC和NCM - HHO - GPERRL - TSMC的积分时间绝对误差分别降低了15.16%、26.74%和30.23%,控制能量分别降低了64.71%、72.66%和77.85%。

English Abstract

The present work proposes a state-of-the-art terminal sliding mode control (TSMC) strategy for blade pitch control to mitigate the cyclic aerodynamics load and rated power, considering a 63 m blade horizontal axis wind turbine (HAWT) comprising rotary electrohydraulic actuation. This TSMC has been designed using a generalized power exponential rate reaching law, termed as GPERRL-TSMC. The work has employed blade element momentum theory for modeling system dynamics. It has been conclusively proven that the proposed GPERRL-TSMC can achieve simultaneous enhancement in transient performance as well as reduce the detrimental effect of chattering. This controller design is at first further enhanced by optimizing its free parameters using Harris Hawks optimization (HHO), termed as HHO-GPERRL-TSMC. Then a further enhancement of this GPERRL-TSMC design is proposed using a recent variation of HHO, termed here NCM-HHO, i. e. a nonlinear-based chaotic HHO that includes a mutation mechanism to refine the controller design. This NCM-HHO based GPERRL-TSMC is termed here as NCM-HHO-GPERRL-TSMC, Extensive performance evaluations have been carried out to demonstrate that all three variants of GPERRL-TSMC proposed in this work could sufficiently outperform contemporary GPERRL-SMC, for a variety of wind profiles, with NCM-HHO-GPERRL-TSMC consistently showing the best performance. The proposed GPERRL-TSMC, HHO-GPERRL-TSMC, and NCM-HHO-GPERRL-TSMC could achieve a reduction in integral time absolute error of 15.16%, 26.74%, and 30.23% respectively and a reduction in control energy of 64.71%, 72.66%, and 77.85% respectively, with respect to the contemporary reported GPERRL-SMC.
S

SunView 深度解读

从阳光电源的业务视角来看,这项基于非线性混沌Harris Hawks优化算法的风电变桨控制技术具有重要的战略参考价值。虽然该研究聚焦于风电领域,但其核心控制理论与阳光电源在风电变流器和新能源综合解决方案中的技术需求高度契合。

该技术的核心价值在于通过广义幂指数趋近律终端滑模控制(GPERRL-TSMC)实现了变桨系统的精确控制,相比传统方法可降低30.23%的控制误差和77.85%的控制能耗。这种控制精度的提升对阳光电源的风电变流器产品线具有直接应用价值,特别是在大型海上风电项目中,精准的变桨控制能够显著提高发电效率并延长设备寿命。更重要的是,该技术有效抑制了滑模控制固有的抖振问题,这与阳光电源追求高可靠性、低维护成本的产品理念完全一致。

从技术成熟度评估,该研究已完成了基于叶素动量理论的系统建模和多工况验证,但距离工程化应用仍需跨越实时性验证、硬件实现和极端工况测试等关键环节。对阳光电源而言,这项技术的智能优化算法思想可横向迁移至储能系统的功率调度、光伏MPPT控制以及风光储一体化项目的协调控制中。

技术挑战主要集中在算法的实时计算复杂度和工业控制器的算力匹配问题。建议阳光电源可将其作为前瞻性技术储备,重点关注滑模控制与智能优化算法的融合方法论,结合公司在电力电子领域的深厚积累,开发适用于多场景的自适应控制平台,强化在新能源智能控制领域的技术护城河。