← 返回
系统并网技术
★ 5.0
合格电网节点的特征化用于电力系统振荡识别
Characterization of Qualified Grid Nodes for the Identification of Power Network Oscillations
| 作者 | Akash Kumar Mandal · Swades De |
| 期刊 | IEEE Transactions on Industry Applications |
| 出版日期 | 2024年10月 |
| 技术分类 | 系统并网技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 次同步振荡 电网扰动 相量测量单元 扰动识别 优化目标 |
语言:
中文摘要
可再生能源和电力电子元件在传统能源系统中的快速整合导致电网中的次同步振荡(SSO)增多。因此,对次同步振荡进行准确且全面的监测对于系统的可靠运行至关重要。确保电网无故障运行的重要性使得有必要重新定义电力系统的稳定性和控制概念。在这方面,本文针对电网扰动开展了一项基准研究,旨在有效识别最适合监测的母线,以捕捉电网中存在的扰动。我们的分析表明,与现有技术相比,所提出的方法在计算速度上快得多,并且在不降低电网扰动识别精度的前提下,用于扰动识别的母线数量显著减少。优化目标的理论公式通过使用相量测量单元(PMU)的基于数据驱动的性能结果得到了验证。PMU数据是通过实时结构化计算机辅助设计(RSCAD)仿真生成的。考虑到各种不利情况,如单个PMU故障、单条线路故障、受测量噪声影响的PMU数据以及PMU运行异常等,我们的结果显示,在正常和不利系统运行情况下,数据占用量分别减少了≥50%和≥75%,同时能够识别出>95%的关键次同步振荡频率,执行时间减少了>94%。此外,与现有最先进的机器学习和统计次同步振荡识别方法相比,所提出的方法在标准IEEE网络中次同步振荡识别精度提高了约25%,抗噪声能力提高了约25%,对电网不利情况的额外耐受能力提高了约15%,并且随着电网规模每增加一个节点,精度仅损失0.21%。
English Abstract
Rapid integration of renewable energy sources and power electronic components in the conventional energy systems has resulted in increased sub-synchronous oscillations (SSOs) in the power network. As a consequence, accurate and exhaustive monitoring of SSOs is critical for reliable system operation. The importance of failure-proof network operation has necessitated the requirement of a revised notion of power system stability and control. In this regard, this paper presents a benchmark study on power grid disturbances to efficiently identify the most qualified buses that should be monitored to capture the perturbations present in the network. Our analysis shows that the proposed approach is computationally much faster and utilizes a significantly reduced number of buses for disturbance identification as compared to the state-of-the-art, without compromising on the disturbance identification accuracy in the network. Theoretical formulation of optimization objectives are verified by the results from the data-driven performance results using phasor measurement units (PMUs). PMU data was generated through real-time structured computer-aided design (RSCAD) simulation. Considering various adversities, such as single PMU loss, single line loss, measurement noise-infested PMU data, and compromised PMU operation, our results demonstrate 50% and 75% reduced data footprint under normal and adverse system operations, respectively, while identifying > 95% of the critical SSO frequencies, with a >94% reduced execution time. Also, the proposed approach presents 25% enhanced accuracy of SSO identification in standard IEEE networks, 25% improved noise immunity, 15% additional immunity to grid adversities as compared to the state-of-the-art machine learning and statistical SSO identifiers, with only 0.21% accuracy loss on per-node increase in grid size.
S
SunView 深度解读
从阳光电源的业务视角来看,这项关于电网次同步振荡(SSO)监测的研究具有重要的战略价值。随着我们大规模光伏逆变器和储能系统接入电网,电力电子设备与传统电网的交互正在引发日益复杂的振荡问题,这直接关系到我们设备的并网稳定性和客户侧的运行安全。
该论文提出的优化监测节点选择方法,为阳光电源提供了三个层面的应用价值:首先,在产品开发层面,这种高效的振荡识别技术可集成到我们的新一代智能逆变器和储能变流器中,使设备具备主动感知电网扰动的能力,提升并网适应性。其超过94%的计算效率提升意味着可在边缘侧实时部署,无需依赖云端处理。其次,在系统解决方案层面,该技术能够帮助我们为大型光伏电站和储能电站设计更精准的监测架构,通过减少50-75%的数据采集点,显著降低相量测量单元(PMU)的部署成本,同时保持95%以上的振荡频率识别准确率。第三,在电网服务层面,这为我们拓展电网稳定性分析服务提供了技术基础。
技术成熟度方面,该研究已通过RSCAD实时仿真验证,且在噪声、设备故障等实际工况下表现出色,具备较高的工程化可行性。主要挑战在于如何将该算法与我们现有的电网支撑功能(如SVG、主动支撑等)深度融合,以及在超大规模新能源场站中的扩展性验证。建议我们的中央研究院与相关团队建立联系,探索在智能电网解决方案中的先导应用,抢占新能源并网安全监测的技术高地。