← 返回
控制与算法 ★ 5.0

面向高比例逆变器电力系统的耦合全阶动态整体小信号稳定性分析

Holistic Small-Signal Stability Analysis for Large-Scale Inverter-Intensive Power Systems With Coupled and Full-Order Dynamics From Control Systems and Power Networks

作者 Lizhi Ding · Yuzhu Ouyang · Xiaonan Lu · Junjie Qin · Shuan Dong · Andy Hoke
期刊 IEEE Transactions on Industry Applications
出版日期 2024年10月
技术分类 控制与算法
相关度评分 ★★★★★ 5.0 / 5.0
关键词 逆变器资源 小信号模型 稳定性分析 电力系统 定量方法
语言:

中文摘要

基于逆变器的电源(IBR)在现有电力系统中的渗透率不断提高,这为增强可持续性带来了巨大益处,但同时也在惯性不足、潜在不稳定以及复杂的网络动态等方面带来了不可避免的挑战。然而,电网跟随型(GFL)和电网形成型(GFM)IBR 与其他组件(即同步发电机 [SG]、负载和网络等)之间的相互作用所引入的额外耦合尚未得到清晰的探究。目前仍缺乏一个涵盖控制系统和电网的全面、可扩展且定量的稳定性分析框架。为填补这一技术空白,本文建立了一个包含旋转发电单元和 IBR 的整个系统的整体小信号模型。提出了一个扩展的潮流模型,该模型考虑了发电机控制策略和电网的运行动态,可为小信号建模提供变化的稳态运行点。将所提出的方法与 MATLAB 求解器进行比较,结果表明,所提出的方法计算时间最短,对于一个多达 2000 个母线的大规模电力系统,计算时间可少于 12 秒。此外,还开发了一种定量方法来识别 IBR 对系统性能的影响,重点关注 GFL IBR 带来的潜在稳定性问题、采用 GFM IBR 的额外益处、用 GFM IBR 替代 SG 的可行性,以及不同类型发电单元渗透率的影响。最后,以一个实际的孤岛电力系统为例验证了所提出的方法,并通过硬件在环(HIL)测试进一步证明了所提出分析方法的有效性。

English Abstract

The increasing penetration of inverter-based resources (IBRs) into the existing power systems introduces tremendous benefits for enhanced sustainability but also poses inevitable challenges in terms of insufficient inertia, potential instability, and complex network dynamics, among others. However, the additional coupling introduced by the interactions among grid-following (GFL) and grid-forming (GFM) IBRs and the other components (i.e., synchronous generators [SGs], loads, and network, etc.) has not been clearly explored. A holistic, scalable, and quantitative stability analysis framework with the control systems and power networks is still missing. In this paper, to fill in the technical gaps, a holistic small-signal model of the entire system with both rotating generation units and IBRs is established. An extended power flow model with operation dynamics from both generator control schemes and power networks is proposed to provide the varying steady-state operating points for small-signal modeling. The proposed method is compared with MATLAB solvers, and the results show that the proposed approach has a minimum calculation time, which can be less than 12 seconds for a large-scale power system with up to 2,000 buses. Furthermore, a quantitative method is developed to identify the impacts of IBRs on system performance with emphases on the potential stability issues with GFL IBRs, additional benefits of employing GFM IBRs, the feasibility of replacing SGs with GFM IBRs, and the impact of penetration level of different kinds of generation units. Finally, a field island power system is used to verify the proposed approach, and hardware-in-the-loop (HIL) tests are provided to further demonstrate the effectiveness of the proposed analysis.
S

SunView 深度解读

从阳光电源的业务视角来看,这项关于大规模逆变器密集型电力系统小信号稳定性的全局分析技术具有重要战略价值。随着公司光伏逆变器和储能系统在全球电网中的渗透率持续提升,该研究所关注的跟网型(GFL)和构网型(GFM)逆变器之间的耦合交互问题,正是阳光电源在高比例新能源接入场景下亟需解决的核心技术挑战。

该论文提出的全局小信号建模框架对阳光电源产品开发具有三方面价值:首先,其量化分析方法可直接应用于评估阳光电源1+X模块化逆变器和PowerTitan储能系统在复杂电网环境下的稳定性表现,为产品控制策略优化提供理论依据;其次,论文验证了GFM逆变器相比GFL逆变器在系统稳定性方面的显著优势,这为公司持续推进构网型储能技术研发提供了有力支撑,特别是在海岛、微网等弱电网场景的应用;第三,针对2000节点大规模系统12秒内完成计算的高效算法,可集成到阳光电源的智慧能源管理平台,实现实时稳定性评估与预警。

技术成熟度方面,该方法已通过实际孤岛系统和硬件在环测试验证,具备较强的工程应用可行性。主要挑战在于如何将理论模型与阳光电源多样化的产品矩阵(涵盖不同功率等级、拓扑结构的逆变器)进行适配,以及在多厂家设备混合并网场景下的模型泛化能力。

建议阳光电源将此技术纳入中央研究院的前瞻性研究课题,重点探索其在"新能源+储能"一体化解决方案中的应用,特别是为GFM储能系统的控制参数整定和并网适应性测试建立标准化工具链,这将显著增强公司在高比例新能源电力系统解决方案领域的技术竞争力。