← 返回
光伏发电技术 储能系统 构网型GFM 跟网型GFL ★ 5.0

并网逆变器跟网与构网控制之间无缝切换方法

Seamless Switching Method Between Grid-Following and Grid-Forming Control for Renewable Energy Conversion Systems

作者 Xian Gao · Dao Zhou · Amjad Anvari-Moghaddam · Frede Blaabjerg
期刊 IEEE Transactions on Industry Applications
出版日期 2024年10月
技术分类 光伏发电技术
技术标签 储能系统 构网型GFM 跟网型GFL
相关度评分 ★★★★★ 5.0 / 5.0
关键词 可再生能源 并网逆变器 控制策略 平滑切换方法 稳定性
语言:

中文摘要

与脱碳工作相一致,全球对风能和太阳能等可再生能源产生了广泛兴趣,这些能源通过并网逆变器接入电网。从传统的基于同步发电机的电力系统向基于电力电子设备的电力系统转变,由于可再生能源输出的随机性和间歇性,增加了系统的复杂性。因此,并网逆变器需要动态调整其控制策略,以应对外部电网条件的变化,并确保高可靠性。然而,这种转变可能会导致控制回路(如功率回路或电压回路)发生突变,进而引起电压和电流畸变,可能危及安全运行。为解决这一问题,本文提出了一种在并网模式下实现跟网(GFL)控制和构网(GFM)控制之间平滑切换的方法。该方法可以提高并网变流器的控制灵活性,拓宽电力系统的稳定边界。通过对一台15.8 kVA并网变流器进行案例研究,验证了所提方法的有效性。利用Matlab/Simulink进行时域仿真,并搭建实验样机,验证了所提控制方法的有效性。结果表明,所提控制方法能有效减轻过渡过程中的电压和电流畸变,确保更安全可靠的运行。

English Abstract

In alignment with decarbonization efforts, there has been widespread global interest in renewable energy sources such as wind and solar, which are connected to the grid via grid-connected inverters. The transition from traditional synchronous generator-based power systems to power-electronic-based power systems has introduced increased complexity due to the stochastic and intermittent nature of renewable energy outputs. Consequently, grid-connected inverters need to dynamically adapt their control strategies to cope with varying external grid conditions and ensure high reliability. However, such transitions can cause abrupt changes in the control loops (e.g., power loop or voltage loop), and lead to voltage and current distortions, potentially compromising safe operation. To address this issue, this paper proposes a smooth switching method between the grid-following (GFL) and grid-forming (GFM) control in grid-connected mode. This method can improve the control flexibility of the grid-connected converters and broaden the stability boundary of the power system. The proposed method is verified in a case study of a 15.8 kVA grid-connected converter. Time-domain simulations carried out in Matlab/Simulink and an established experimental prototype are applied to verify the effectiveness of the proposed control method. The results demonstrate that the proposed control method effectively mitigates voltage and current distortions during transitions, ensuring safer and more reliable operation.
S

SunView 深度解读

从阳光电源的业务视角来看,这项GFL与GFM无缝切换技术具有重要的战略价值。当前我们的光伏逆变器和储能变流器产品正面临电网形态转变带来的挑战——随着新能源渗透率提升,传统同步发电机占比下降,电网支撑能力减弱。该技术通过实现跟网型和构网型控制的动态切换,能够显著增强我们产品在弱电网环境下的适应性和稳定性,这对于拓展海外市场尤其是电网基础设施相对薄弱的新兴市场具有现实意义。

从产品应用层面,该技术可直接嵌入我们的SG系列逆变器和PowerTitan储能系统中。在正常电网条件下采用GFL模式降低成本和控制复杂度,当检测到电网阻抗增大或短路比降低时自动切换至GFM模式提供电压和频率支撑,这种智能化控制策略能够提升系统可靠性并拓宽稳定运行边界。论文中15.8kVA的验证规模虽然较小,但技术原理可扩展至我们的兆瓦级产品线。

技术成熟度方面,该方案已完成仿真和实验样机验证,处于中等偏上水平,但从实验室到商业化部署仍需关注几个关键点:一是多机并联场景下的协调切换策略,二是不同电网标准下的参数自适应优化,三是切换判据的鲁棒性设计以避免频繁切换。同时,这也为我们提供了差异化竞争机遇——通过掌握双模自适应技术,可在投标大型新能源项目时提供更强的电网友好性承诺,特别是在风光储一体化项目中展现技术领先优势,并为未来参与虚拟电厂和辅助服务市场奠定技术基础。