← 返回
风电变流技术 ★ 5.0

基于多相逆变器与绕组的主动故障电流动态抑制技术

Active Fault Current Mitigation With Multi-Phase Inverter and Windings for Resilience Against Short-Circuit Faults Between Adjacent Turns

作者 Ahmad Daniar · Matthew C. Gardner · Rahman Sajadi · Salek A. Khan
期刊 IEEE Transactions on Energy Conversion
出版日期 2024年10月
技术分类 风电变流技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 主动故障缓解技术 相邻匝间短路故障 故障电流缓解控制环 零序电压注入 电机运行
语言:

中文摘要

本文提出了一种应对电机相邻匝间短路故障的主动故障缓解技术。该技术通过六相逆变器、差模扼流圈(DMC)和双三相交错绕组结构得以验证。采用这种结构,相邻匝间短路故障会转变为相间故障。因此,故障电流不再仅在电机内部循环,而是会通过电机端子,从而易于测量。然后,在磁场定向控制(FOC)算法中加入故障电流缓解控制回路(FCMCL),以调节施加到受影响相的电压,从而降低故障电流。当检测到故障电流时,FCMCL会在其中一组三相绕组中注入零序电压。通过这种方法,故障电流可降低至额定电流的4%以下,使电机在故障存在的情况下仍能近乎正常地继续运行。这一4%比仅采用DMC和三相逆变器的基准被动实施方案所达到的42%小了一个数量级。仿真结果与实验结果高度吻合,验证了所提方法的有效性和准确性。

English Abstract

This paper presents an active fault mitigation technique in response to a short-circuit fault between adjacent turns in electric machines. The proposed technique is demonstrated using a six-phase inverter, differential mode chokes (DMCs), and a dual three-phase interleaved winding arrangement. With this arrangement, a short circuit fault between adjacent turns becomes a phase-to-phase fault. Thus, the fault current no longer circulates only inside the motor; instead, it passes through motor terminals and can easily be measured. Then, a fault current mitigation control loop (FCMCL) is added to the field oriented control (FOC) algorithm to adjust the voltages applied to the affected phases to reduce the fault current. When a fault current is detected, the FCMCL injects a zero-sequence voltage in one of the three-phase sets. Using this method, the fault current is reduced to less than 4% of the rated current, allowing the machine to continue its operation almost completely close to normal conditions in the presence of fault. This 4% is an order of magnitude smaller than the 42% achieved with the baseline passive implementation involving only DMCs and a three-phase inverter. Close agreement between simulation and experimental results validates the effectiveness and accuracy of the proposed method.
S

SunView 深度解读

从阳光电源的业务视角来看,这项基于多相逆变器的主动故障电流抑制技术具有重要的战略价值。该技术针对电机绕组匝间短路这一行业痛点,通过六相逆变器配合差模扼流圈和双三相交错绕组设计,将传统难以检测的匝间故障转化为可测量的相间故障,并通过零序电压注入将故障电流抑制至额定值的4%以内,较传统被动方案的42%实现了数量级的突破。

对于阳光电源的储能变流器(PCS)和光储充一体化系统而言,这项技术的应用潜力显著。当前储能系统中的双向变流器在电网侧和电池侧均面临故障容错需求,该技术可增强系统在局部故障下的持续运行能力,提升系统可用性和安全性。特别是在大型地面电站和工商业储能场景中,故障不停机能力直接关系到投资回报率和电网稳定性。此外,阳光电源在电动汽车驱动系统领域的布局也可受益于此技术,提升电驱系统的功能安全等级。

从技术成熟度评估,该方案已完成仿真与实验验证,但工程化应用仍需考虑:一是六相逆变器较三相方案增加了硬件复杂度和成本;二是故障检测算法需在毫秒级响应,对控制器性能要求更高;三是特殊绕组设计需与电机厂商深度协同开发。然而,这些挑战恰好契合阳光电源在功率电子拓扑创新和系统集成方面的技术积累。建议将该技术纳入下一代高可靠性储能变流器和电驱系统的预研路线图,重点探索在关键任务场景的差异化竞争优势。