← 返回
系统并网技术
★ 5.0
集成排放分配方法的热电联产与混合热泵耦合能源系统动态核算模型
Dynamic accounting model with integrated emission allocation methods for coupled energy systems with combined heat and power plants and hybrid heat pumps
| 作者 | Chris Burkela · Marco Griesbach · Florian Heberle · Dieter Brüggemann · Andreas Jess |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 342 卷 |
| 技术分类 | 系统并网技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Dynamic accounting shows a deviation of 10% compared to conventional methods. |
语言:
中文摘要
摘要 详细的排放核算方法正日益成为衡量能源系统脱碳进程的重要工具。传统的核算方法仅使用年度需求值和电网电力的平均能源结构,因而忽略了跨越核算边界的时间动态能量流与排放流动。此外,在相互连接的供能网络中,能量与排放存在随时间变化的交互过程。本研究从动态视角出发,分析一种通过热电联产机组(CHP)和可同时提供供热与供冷的热泵(HP)将电力、供热和供冷网络相互联结的耦合能源系统。为准确刻画排放流动的行为特征,本文基于Python开发了一种动态排放平衡模型。该框架建立在碳排放流理论基础之上,采用拟输入-输出(Quasi-Input-Output, QIO)节点系统实现,并利用小时级分辨率的实测数据进行驱动。不同CHP的分配方法被整合并应用于HP,从而实现了各网络之间动态的能量与排放交换模拟。此外,本文提出了一种专用于热泵的核算方法——拜罗伊特方法(Bayreuth method, BaM)。累积核算结果表明,不同的分配方法会影响各网络之间的排放分布,而时间分辨率则决定了从公共电网吸收的排放量。在本案例研究中,这种影响对供冷网络最为显著:不同分配方法之间的差异最高可达69%,分辨率效应最高达20%。相较于传统方法,采用更高时间分辨率使系统的整体排放核算结果提升了约10%。由此可见,动态平衡模型为精确捕捉能源系统的排放提供了可行解决方案。对时间序列排放流动的分析实现了无缝追踪与高精度核算,即使超出系统边界仍可保持连续性。此外,这些模型可推广至其他现有系统,为优化能源管理策略提供框架支持,有助于推进排放负荷在时间维度上的精细化管理。
English Abstract
Abstract Detailed emission accounting methods are becoming increasingly important as a measurement tool for the decarbonization of energy systems. Conventional accounting methods use only annual demand values and the average grid electricity mix, thereby neglecting dynamic energy and emission flows across the accounting boundary. Moreover, in cases of interconnected supply grids there is a time-dependent exchange of energy and emissions. In this work, a coupled energy system is considered in a dynamic perspective, which connects an electricity, heating and cooling grid through a combined heat and power unit (CHP) and a heat pump (HP) that provides heating and cooling energy at the same time. In order to map the behavior of the emission flows, a dynamic emission balance model is developed using Python. The framework is based on the carbon emission flow theory which is implemented via a Quasi-Input-Output (QIO) node system and uses measured data in an hourly resolution. The dynamic interchange between the grids is enabled by diverse CHP allocation methods that are integrated and applied to the HP. In addition, a method specific for HPs is presented as the Bayreuth method (BaM). The cumulative accounting demonstrates that the allocation methods influence the distribution between the grids, while the resolution determines the absorbed emissions from the public electricity grid. In the case study under consideration, this has the greatest impact on the cooling grid. There is a difference of up to 69 % between the allocation methods and a resolution effect of up to 20 %. The system’s overall balance is enhanced by around 10 % due to a higher resolution in comparison with conventional methodologies. It is evident that dynamic balancing models offer a viable solution for accurately capturing the emissions of an energy system. The analysis of temporal emission flows enables seamless tracking and precise accounting results, even beyond the boundary limits. Furthermore, these models can be transferred to other existing systems and provide a framework for the optimization of energy management strategies, facilitating the temporal progression of the emission load.
S
SunView 深度解读
该动态碳排放核算模型对阳光电源多能互补系统具有重要价值。针对热电联产与热泵耦合场景,可应用于ST储能系统与充电站的协同优化:通过Python框架实时追踪电-热-冷三网碳流,指导PowerTitan储能在不同时段的充放电策略。准输入输出节点理论可集成至iSolarCloud平台,实现小时级碳排放监测。研究显示分配方法差异达69%,验证了动态核算对SG逆变器并网策略优化的必要性,为构建零碳工业园区综合能源管理系统提供理论支撑。