← 返回
新型低水头抽水蓄能机组中涡旋演化机制与压力脉动耦合的前瞻性评估
A prospective assessment of vortex evolution mechanisms and pressure fluctuation coupling in novel low-head pumped hydro energy storage units
| 作者 | Haoru Zhao · Baoshan Zhucd · Chaoyue Wange · Yadong Hanf |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 342 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 多物理场耦合 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Discovered dominant turbulent vortex structures governing low-head [PHES](https://www.sciencedirect.com/topics/engineering/hydro-energy "Learn more about PHES from ScienceDirect's AI-generated Topic Pages") unit. |
语言:
中文摘要
摘要 低水头抽水蓄能(PHES)机组作为中国就地消纳可再生能源政策背景下的一种新型调节设备,其运行稳定性受到转轮内部湍流涡旋演化的显著影响,表现出突出的稳定性挑战。然而,关键涡旋结构与机组不稳定性之间的内在关联机制尚不明确。本研究通过实验与数值模拟相结合的方法,系统地探究了转轮内三维角区涡旋的演化规律及其对水力效率和压力脉动的跨尺度影响。主要研究成果如下:(1)建立了涡旋强度与效率损失之间的定量关联关系,揭示出涡旋强度每增加10 s−1,水力效率下降1.33个百分点;(2)基于刚性涡量输运方程实现了剪切效应与旋转效应的解耦,揭示了传统涡量输运方程在分离剪切应变与刚体转动方面的固有耦合局限性。结果证实,刚性涡量旋度项(RCT)通过涡管拉伸主导了涡旋的生成过程,贡献率达到85.91%–87.41%,从而驱动了多尺度流动动力学行为;(3)本研究揭示了刚性涡量(ωR)、剪切涡量(ωS)与压力脉动之间存在的反相位耦合机制,在涡旋演化路径上三者的幅值分别衰减了49.5%、44.2%和40.7%,伴随约75%的能量耗散。RCT项驱动了“剪切流→ωS→ωR→压力能”的级联过程,为低水头PHES机组的涡旋控制与稳定性优化提供了新的理论范式。
English Abstract
Abstract Low-head pumped hydro energy storage (PHES) units, as a new type of regulation equipment under China’s policy of local renewable energy consumption, exhibit significant stability challenges influenced by turbulent vortex evolution within the runner. However, the underlying mechanism linking key vortex structures to unit instability remains unclear. This study systematically investigates the evolution of three-dimensional corner vortices in the runner and their cross-scale effects on hydraulic efficiency and pressure fluctuations through combined experimental and numerical approaches. The main findings are as follows: (1) A quantitative correlation between vortex intensity and efficiency loss is established, revealing that a 10 s −1 increase in vortex strength reduces hydraulic efficiency by 1.33 percentage points. (2) The rigid vorticity transport equation decouples shear and rotation effects, revealing the inherent coupling limitation of conventional vorticity transport equations in separating shear strain from rigid rotation. Results confirm that the rigid vorticity curl term (RCT) dominates vortex generation via tube stretching (contributing 85.91 %–87.41 %), thereby driving multi-scale flow dynamics. (3) This study reveals an anti-phase coupling mechanism among rigid vorticity ( ω R ), shear vorticity ( ω S ), and pressure fluctuations, showing amplitude decays of 49.5 %, 44.2 %, and 40.7 % along the vortex evolution path, with about 75 % energy dissipation. The RCT term drives a shear flow → ω S → ω R → pressure energy cascade, providing a new theoretical paradigm for vortex control and stability optimization in low-head PHES units.
S
SunView 深度解读
该低扬程抽水蓄能研究揭示的涡旋-压力耦合机制对阳光电源储能系统具有重要借鉴价值。研究中涡旋强度与效率损失的量化关系(10s⁻¹涡强对应1.33%效率损失)可应用于ST系列PCS和PowerTitan液冷系统的流场优化设计,通过抑制冷却通道内角涡旋降低泵送功耗。反相耦合机制揭示的能量级联路径为储能系统多物理场协同控制提供理论依据,可指导iSolarCloud平台开发基于压力脉动监测的预测性维护算法,提升大型储能电站热管理系统稳定性与全生命周期效率。