← 返回
风电变流技术
★ 5.0
可逆固体氧化物电池系统的综合热管理策略设计以平抑风电波动
Comprehensive thermal management strategy design for reversible solid oxide cell system to smooth wind power fluctuations
语言:
中文摘要
摘要 可逆固体氧化物电池(rSOC)可通过在电解池(EC)模式和燃料电池(FC)模式之间的双向转换,有效平抑可再生能源发电的波动性功率输出。然而,频繁的负载变化会引起严重的温度波动,进而导致rSOC内部产生热损伤。为在平抑风电输出波动的同时维持系统的热安全性,本文提出一种内-外双环热管理策略,即内环温度控制与外环功率管理相结合的rSOC系统控制架构。其中,内环温度控制采用前馈控制器调节燃烧器燃料比(BFR),并结合模糊PID控制器稳定rSOC温度,从而确保在所有运行工况下实现有效的热管理;在外环控制中,基于内环控制的基础,根据负荷需求调节输入电流,使rSOC系统能够在正常的EC/FC模式与热待机状态之间灵活切换。此外,设定0.6 A/s的恒定电流变化率,以抑制温度变化速率并防止燃料不足。通过施加一系列电流变化输入来模拟六种rSOC切换动态过程,结果表明,内环温度控制成功实现了rSOC温度的稳定控制,在EC模式和FC模式下的最大温度波动分别约为0.2 K和2 K,且温度梯度与温度变化率均保持在安全范围内。进一步以一周的风电输入为例进行验证,证明所提出的热管理rSOC系统不仅能够维持稳定且安全的热动态特性,还能与风力发电协同向电网提供连续可靠的电能。研究结果表明,风-rSOC联合发电系统的最大功率波动保持在14%以内,且仅出现在模式切换期间。上述结果证实,所提出的策略能够显著提升rSOC系统在波动运行条件下的热稳定性与运行可靠性,为其与可再生能源电网的集成提供了有效的技术参考。
English Abstract
Abstract Reversible solid oxide cell (rSOC) can effectively smooth the fluctuating power output of renewable energy generation through the bi-directional conversion between electrolyzer (EC) mode and fuel cell (FC) mode. However, frequent load changes can cause severe temperature fluctuations, which in turn lead to thermal damage in the rSOC. To stabilize the fluctuating wind power output while maintaining the thermal safety of the system, an inner-outer dual-loop thermal management strategy, i.e., inner-loop temperature control and outer-loop power management for the rSOC system is proposed in this work. Of which, the inner-loop temperature control respectively uses the feedforward controller to regulate the burner fuel ratio ( BFR ) and the fuzzy PID controller to stabilize the rSOC temperature, thereby ensuring effective thermal management across all operating conditions; Then based on the inner-loop control, the outer-loop power management is performed to adjust the current input according to load demand, so that the rSOC system can operate in normal EC/FC mode and hot standby state. Furthermore, a constant current change rate of 0.6 A/s is used to suppress the temperature change rate and prevent fuel deficit. By applying a series of current change inputs to simulate the six rSOC switching dynamics, the results show that the inner-loop temperature control successfully stabilizes the rSOC temperature. And the maximum temperature fluctuations in EC/FC modes are respectively about 0.2 K and 2 K, while both the temperature gradient and temperature change rate remain within the safe ranges. Moreover, taking a week of wind power input as an example, it is further demonstrated that the proposed thermal management rSOC system can not only maintain stable and safe thermal dynamics but also combine wind power generation to provide continuous and reliable electricity to the grid. The research results indicate that the maximum power fluctuation of the wind-rSOC combined power generation system stays within 14 %, occurring only during mode switching. These prove that the proposed strategy can greatly enhance the thermal stability and operational reliability of the rSOC system under fluctuating operating conditions, offering an effective reference for its integration with renewable energy grids.
S
SunView 深度解读
该rSOC双向储能与热管理技术对阳光电源ST系列储能变流器及PowerTitan系统具有重要参考价值。其内外双环控制策略可借鉴至PCS功率管理:内环温度控制对应功率器件热管理,外环功率调度对应电网调频响应。0.6A/s恒定变化率抑制温度波动的思路,可应用于SiC/IGBT模块的dI/dt控制,降低热应力。该系统平抑风电波动至14%以内的能力,验证了储能系统在新能源并网中的价值,为阳光电源GFM控制策略优化及iSolarCloud平台的预测性热管理算法提供创新方向,提升储能系统在高频充放电工况下的可靠性与寿命。