← 返回
氢能与燃料电池 热仿真 ★ 4.0

基于CFD的氢系统中冷器在不同工况与流动对齐条件下的传能强化热液性能分析

CFD-based thermo-hydraulic performance analysis of energy transfer capacity enhancement in intercoolers for hydrogen systems considering operating conditions and flow alignment

作者 Gulenay Alevay Kilic
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 343 卷
技术分类 氢能与燃料电池
技术标签 热仿真
相关度评分 ★★★★ 4.0 / 5.0
关键词 氢燃料电池系统 热管理 中冷器 热-水力性能 计算流体动力学
语言:

中文摘要

摘要 氢燃料电池系统中的热管理对于系统的效率和耐久性至关重要,而中冷器的优化直接影响这些系统的性能。本研究采用三维计算流体动力学(CFD)方法,在多种翅片几何形状、布置方式和运行条件下,对用于氢燃料电池系统中的叉流式水冷中冷器的热液性能进行了全面研究。针对三角形和I形翅片结构,在垂直和水平布置方式下,分别在空气入口温度为353 K和373 K、空气流速从1至12 m/s(涵盖层流到过渡流态)的条件下开展了参数化分析。数值模型通过文献中已有的实验数据进行了验证,平均绝对百分比误差为10.4%。结果表明,在空气入口温度为373 K时,采用垂直布置的I形翅片结构在所有流动状态下均表现出最高的总传热量(Q̇)和热流密度(q″)值。在过渡流态内的高雷诺数(Re)条件下,该结构的传热性能较三角形翅片结构高出约35%。努塞尔数(Nu)、斯坦顿数(St)以及焓值也随Re数的增加呈现出相似的提升趋势。在传热性能与压降之间的权衡方面,水平布置的I形结构在层流区域具有最高的j/f比值,因此在能量效率方面表现出显著优势。热效率分析表明,在空气入口温度为373 K下运行的系统,其平均传热速率比在353 K下运行的系统高出20–30%。所得数据表明,优化翅片几何形状和布置方式可显著提升氢燃料电池系统热管理中的系统性能。

English Abstract

Abstract Thermal management in hydrogen fuel cell systems is critically important for system efficiency and durability, and the optimization of intercoolers directly affects the performance of these systems. In this study, the thermal–hydraulic performance of crossflow water-cooled intercoolers used in hydrogen fuel cell systems was comprehensively investigated using a three-dimensional computational fluid dynamics (CFD) approach under various fin geometries, placement configurations, and operating conditions. Parametric analyses were carried out for triangular and I-shaped fin structures, arranged in vertical and horizontal configurations, at air inlet temperatures of 353 K and 373 K, and air velocities ranging from 1 to 12 m/s, spanning laminar to transitional flow regimes. The numerical model was validated against experimental data available in the literature, and the mean absolute percentage error was calculated as 10.4 %. The results revealed that, at an air inlet temperature of 373 K, the I-shaped fin configuration with vertical placement exhibited the highest total heat transfer ( Q̇ ) and heat flux ( q″ ) values across all flow regimes. At high Reynolds ( Re ) numbers within the transitional regime, this configuration provided approximately 35 % higher heat transfer performance compared to the triangular fin structures. Nusselt ( Nu ) number, Stanton ( St ) number, and enthalpy values also improved with increasing Re number in a similar manner. In terms of the trade-off between heat transfer and pressure drop, the horizontally placed I-shaped configuration offered the highest j/f ratio, especially in the laminar flow regime, thus representing an advantageous alternative in terms of energy efficiency. Thermal efficiency analyses indicated that systems operating at an air inlet temperature of 373 K achieved on average 20–30 % higher heat transfer rates compared to those operating at 353 K. The data obtained demonstrated that optimizing fin geometry and placement configuration can significantly enhance system performance in the thermal management of hydrogen fuel cell systems.
S

SunView 深度解读

该CFD热仿真技术对阳光电源氢能及热管理系统具有重要价值。研究中I型翅片垂直布置在过渡流态下热传递性能提升35%的发现,可直接应用于ST系列储能变流器和充电桩产品的散热优化设计。特别是j/f比优化方法能指导功率器件(SiC/IGBT模块)冷却系统设计,在保证传热效率同时降低泵功耗。建议将该仿真方法集成到PowerTitan等大功率储能系统热管理开发流程,通过翅片几何优化提升20-30%散热效率,增强系统可靠性和功率密度,并可延伸至电动汽车OBC充电机热设计验证。