← 返回
光伏发电技术
★ 5.0
基于银掺杂CIGS异质结的侧向光伏效应调制可见-近红外光电探测器
Lateral Photovoltaic Effect-Modulated Visible-Near-Infrared Photodetector Based on Ag-Doped CIGS Heterojunction
| 作者 | Juan Wang · Jihong Liu · Hao Wang · Heqing Wen · Zengkun Pu · Haozhe Zhao |
| 期刊 | IEEE Transactions on Electron Devices |
| 出版日期 | 2025年8月 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 光电探测器 横向光伏效应 Ag掺杂Cu(In Ga)Se2异质结 光谱响应 响应速度 |
语言:
中文摘要
随着智能技术的进步和应用领域的拓展,高性能、低功耗的光电探测器(PD)受到了越来越多的关注。光伏效应(PVE)被广泛认为是开发自供电光电探测器的关键机制。然而,由于纵向载流子分离和输运过程的调制有限,其性能仍受到限制。在这项工作中,提出了一种基于横向光伏效应(LPE)的光电探测器,采用了银掺杂的铜铟镓硒(ACIGS)异质结。虽然横向光伏效应基于光伏效应运行,但它的独特之处在于引入了额外的横向扩散过程,为调节光响应提供了一种通用且有前景的策略。结果表明,该光电探测器在零偏压下实现了稳定高效的横向光伏效应响应,光电流与激光功率的增加呈线性关系。此外,该异质结具有较宽的光谱响应范围,从405 nm到1064 nm。横向光伏效应响应强烈依赖于激光波长,在780 nm处观察到最佳响应度(<inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${R}\text {)}$ </tex-math></inline-formula>)和探测率(<inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${D}\text {)}$ </tex-math></inline-formula>)分别为50 mA/W和<inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$1.32\times 10^{{11}}$ </tex-math></inline-formula> 琼斯。由于载流子的差分收集,当光照位置从左电极逐渐移向右电极时,横向光伏效应响应从负最大值平稳过渡到正最大值,在电极中点处减小到零。这种行为遵循近乎线性的空间分布,可用载流子横向扩散理论很好地解释。此外,还对该光电探测器的响应速度进行了深入研究。尽管响应时间随着脉冲频率从20 Hz增加到1000 Hz而迅速减小,但最终稳定在0.07 ms的恒定值。重要的是,该响应时间不受功率密度、激光波长和光照位置变化的影响。这项工作为基于ACIGS异质结中横向光伏效应机制的高性能光电探测器的开发提供了见解。
English Abstract
With the advancement of intelligent technology and the expanding application fields, high-performance, low-power photodetectors (PDs) have garnered increasing attention. The photovoltaic effect (PVE) is widely regarded as a key mechanism for developing self-powered PD. However, its performance remains constrained due to the limited modulation of longitudinal carrier separation and transport processes. In this work, a lateral PVE (LPE)-based PD was proposed, using an Ag-doped Cu(In,Ga)Se2 (ACIGS) heterojunction. While the LPE operates on the foundation of the PVE, it distinguishes itself by incorporating an additional transverse diffusion process, offering a versatile and promising strategy for tuning photoresponse. The results demonstrate that the PD achieves stable and efficient LPE response at zero bias, with the photocurrent showing a linear relationship with increasing laser power. Moreover, the heterojunction has a broad spectral response range, spanning from 405 to 1064 nm. The LPE response is strongly dependent on the laser wavelength, with optimal responsivity ( R ) and detectivity ( D ) of 50 mA/W and 1.32 10^11 Jones, respectively, observed at 780 nm. Owing to the differential carrier collections, when the illumination position gradually moves from the left electrode to the right electrode, the LPE response transitions smoothly from a negative maximum to a positive maximum, diminishing to zero at the midpoint between electrodes. This behavior follows a nearly linear spatial distribution, which can be well explained by the carrier transverse diffusion theory. Additionally, the response speed of the PD was thoroughly investigated. Although the response time decreases rapidly as the pulse frequency increases from 20 to 1000 Hz, it eventually stabilizes at a constant value of 0.07 ms. Importantly, this response time remains unaffected by variations in power density, laser wavelength, and illumination position. This work provides an insight into the development of high-performance PD based on the LPE mechanism in the ACIGS heterojunction.
S
SunView 深度解读
从阳光电源的业务视角来看,这项基于Ag掺杂CIGS异质结的横向光伏效应光电探测器技术具有多维度的战略价值。该技术的核心创新在于通过横向载流子扩散机制实现零偏压自供电运行,这与我们在光伏系统智能化监测领域的需求高度契合。
在光伏电站运维场景中,该技术可应用于组件级实时监测系统。其405-1064nm的宽光谱响应范围覆盖了太阳光谱的关键波段,能够精准捕捉组件表面的光照分布异常、热斑效应及遮挡问题。特别是其位置敏感特性——光电流随照射位置呈线性分布变化——为开发新型组件诊断传感器提供了理论基础,可实现对局部阴影、污染物分布的精确定位,这对提升我们智慧光伏解决方案的预防性维护能力具有实际意义。
从储能系统角度,该探测器的自供电特性和0.07ms的稳定响应时间,使其适合集成于储能电站的光照监测网络,降低辅助供电需求,符合系统能效优化方向。50 mA/W的响应率虽属中等水平,但其零功耗运行模式在大规模传感器阵列部署中具有显著成本优势。
然而,技术挑战不容忽视。CIGS材料的制备工艺复杂度较高,与我们现有硅基产业链的兼容性需要评估。此外,器件的长期稳定性、环境适应性以及从实验室到工业化量产的良率控制,都是实际应用前需要验证的关键问题。建议将此技术纳入前沿技术跟踪体系,探索与研发机构的合作可能性,为下一代智能光伏系统储备核心传感技术。