← 返回
光伏发电技术 ★ 5.0

铷基双钙钛矿材料与电荷传输层工程的计算研究

Computational Insights Into Rubidium-Based Double Perovskites and Charge-Transport Layer Engineering for High-Efficiency Perovskite LEDs

作者 Awaneendra Kumar Tiwari · Vikash Kumar · Mohd Sazid · Niraj Agrawal · Mangey Ram Nagar
期刊 IEEE Transactions on Electron Devices
出版日期 2025年8月
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 铷基双钙钛矿 光电特性 器件架构 空穴传输层 电子传输层
语言:

中文摘要

基于铷的双钙钛矿材料作为光伏电池的潜在材料,近期受到了广泛关注。然而,这些双钙钛矿材料在钙钛矿发光二极管(LED)领域的研究还相对较少。在本研究中,我们采用剑桥序列总能量包(CASTEP),通过密度泛函理论(DFT)对基于铷的双钙钛矿材料,即Rb₂AlTlCl₆、Rb₂AlAgCl₆和Rb₂AlCuCl₆进行了计算研究,以评估和比较它们的电学和光学性质。通过分析介电常数、吸收率、折射率和反射率来解释其光学特性。采用广义梯度近似 - 佩德韦 - 伯克 - 恩泽霍夫(GGA - PBE)方法计算得到Rb₂AlTlCl₆、Rb₂AlAgCl₆和Rb₂AlCuCl₆的能带隙分别为3.25 eV、2.20 eV和0.70 eV。此外,我们将PTAA、Spiro - OMeTAD、CuI、CuSCN、NiO和MoO₃用作空穴注入层(HILs)/空穴传输层(HTLs),将3P - T2T、ZnO和Zn₂SnO₄用作电子传输层(ETLs),并使用SETFOS软件来确定具有高效率的最佳HTL/Rb₂AlAgCl₆/ETL组合。从模拟研究中可以看出,在18种器件结构中,确定了性能最佳的器件结构ITO/NiO/Rb₂AlAgCl₆/ZnO/LiF/Al,该结构在Rb₂AlAgCl₆发光层中表现出更高的复合效率。此外,还评估了最佳性能器件中钙钛矿层、HTL和ETL厚度的影响,以及相应的复合和电场分布、出光效率、亮度、电流效率和外量子效率(EQE)。这项计算研究和器件工程为制备高效钙钛矿LED提供了一条潜在途径。

English Abstract

Rubidium-based double perovskite materials have recently gained excellent attention as a potential material for photovoltaic cells. However, these double perovskites have not been much explored for perovskite light-emitting diodes (LEDs). In this work, we performed a computational study of rubidium-based double perovskites, i.e., Rb2AlTlCl6, Rb2AlAgCl6, and Rb2AlCuCl6, through density functional theory (DFT) using the Cambridge Serial Total Energy Package (CASTEP) to evaluate and compare their electrical and optical properties. The optical characteristics are explained through the analysis of dielectric constants, absorption, refractive index, and reflectivity. The calculated energy bandgap using the generalized gradient approximation-Perdew–Burke–Ernzerhof (GGA-PBE) approach was 3.25, 2.20, and 0.70 eV for Rb2AlTlCl6, Rb2AlAgCl6, and Rb2AlCuCl6, respectively. Furthermore, we incorporated PTAA, Spiro-OMeTAD, CuI, CuSCN, NiO, and MoO3 as hole-injection layers (HILs)/hole-transport layers (HTLs) and 3P-T2T, ZnO, and Zn2SnO4 as electron-transport layers (ETLs) to recognize the best HTL/Rb2AlAgCl6/ETL combination with high efficiency using the SETFOS software. As observed from the simulation study, among 18 device architectures, the best-performing device architecture, ITO/NiO/Rb2AlAgCl6/ZnO/LiF/Al, was identified, which exhibited higher recombination in the Rb2AlAgCl6 emitting layer. In addition, the effect of the perovskite layer, HTL, and ETL thicknesses was also assessed for the best-performing device, along with their corresponding recombination and electric field distribution, outcoupling efficiency, luminance, current efficiency, and external quantum efficiency (EQE). This computational study and device engineering provide a potential route for fabricating high-efficiency perovskite LED.
S

SunView 深度解读

从阳光电源的业务视角来看,这项关于铷基双钙钛矿LED的计算研究虽然聚焦于发光器件,但其底层材料科学与我们在光伏领域的钙钛矿太阳能电池技术存在显著的技术协同性。该研究通过密度泛函理论系统评估了Rb2AlAgCl6等材料的光电特性,其中2.20 eV的带隙特征使其在光电转换领域具有潜在应用价值。

对于阳光电源当前的核心业务,该研究的价值主要体现在三个层面:首先,双钙钛矿材料因不含铅且稳定性更优,可为我们正在开发的钙钛矿叠层太阳能电池提供材料选择参考,特别是在提升器件长期稳定性方面;其次,研究中采用的电荷传输层工程方法(HTL/ETL优化)与光伏电池的界面工程高度相关,NiO和ZnO等材料在我们的电池产品中已有应用基础,这为快速技术转化提供了可能;第三,SETFOS仿真优化方法论可直接借鉴到光伏器件的结构设计中,降低实验试错成本。

然而需要理性评估的是,该技术目前仍处于纯计算模拟阶段,距离实际器件制备和产业化尚有较大距离。关键挑战包括:铷基材料的成本控制、大面积制备工艺开发、以及从LED到光伏应用的性能转化验证。对于阳光电源而言,建议将此作为前瞻性技术储备,重点关注其在钙钛矿太阳能电池中的稳定性提升潜力,同时可考虑在储能系统的智能显示模块中探索钙钛矿LED的应用场景,形成"材料-器件-系统"的协同创新路径。