← 返回
储能系统技术 储能系统 多物理场耦合 ★ 5.0

理解翻转场效应晶体管

Flip FET, FFET)中的静电耦合及其应对策略

作者 Jiacheng Sun · Haoran Lu · Yu Liu · Wanyue Peng · Runsheng Wang · Heng Wu
期刊 IEEE Transactions on Electron Devices
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 多物理场耦合
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Flip FET 耦合效应 中间介质隔离技术 阈值电压偏移 传播延迟
语言:

中文摘要

翻转场效应晶体管(FFET)是一种新型自对准双面堆叠晶体管结构,但其垂直堆叠特性导致前后器件间存在静电耦合。本文通过TCAD仿真从器件和电路层面系统研究了该耦合效应。结果显示,阈值电压偏移可达135 mV,亚阈值摆幅退化达235 mV/dec,反相器延迟变化高达4.41%,严重影响电路性能。为此,提出一种中间介质隔离(MDI)技术,可有效屏蔽跨侧电场,显著抑制耦合效应。结合Pi栅、Ω栅和全环绕栅等栅结构优化,阈值电压偏移可低至0.12 mV,为FFET的实用化奠定基础。

English Abstract

Flip FET (FFET), a novel self-aligned stacked transistor architecture with dual-sided transistor stacking, was recently proposed and demonstrated. However, due to the vertically stacking nature, the electrical coupling of frontside (FS) and backside (BS) transistors should be carefully examined. Here, we thoroughly investigated the coupling effects of FFET at both device and circuit levels using TCAD simulation. For the device level assessment, the coupling effects are measured by the threshold voltage ( V_ th ) shift and the subthreshold swing (SS) degradation of transistors, as a result of the bias applied on the other side’s transistors. At the circuit level, the propagation delay of FFET inverters was studied. In the worst case scenario, the V_ th shift is up to 135 mV, the SS degradation up to 235 mV/dec (from 72.6 mV/dec), and the inverter’s delay change up to 4.41% is found, which is undesired and intolerable for circuit designs. To address this issue, a novel middle dielectric isolation (MDI) technique was proposed and found to be quite effective in blocking the electrical field from the other side, thus reducing the coupling effects. By implementing the MDI technique, the V_ th shift of no more than 0.85 mV, negligible SS degradation, and the INV’s delay change of less than 0.6% are realized. We also investigated MDI FFET’s gate structure innovations [e.g., Pi-gate, omega-gate (OG), and gate-all-around (GAA)] to enhance the gate control, by which the V _ th shift can be minimized to 0.12 mV. This work paves the way for practical implementation of FFET in the future.
S

SunView 深度解读

该FFET静电耦合抑制技术对阳光电源功率器件设计具有重要借鉴价值。文中提出的中间介质隔离(MDI)技术与多物理场耦合抑制策略,可直接应用于SiC/GaN功率模块的三维集成封装设计,有效解决ST系列储能变流器和SG系列光伏逆变器中功率器件垂直堆叠时的寄生耦合问题。通过优化栅极结构和介质隔离层设计,可将器件阈值电压漂移控制在mV级,显著提升功率模块的开关一致性和温度稳定性,降低PowerTitan大型储能系统中并联器件的环流损耗,为实现更高功率密度的三电平拓扑和模块化设计提供理论支撑。