← 返回
W波段背靠背纵向蛇形槽慢波结构的仿真与实验研究
Simulation and Experimental Investigation on W-Band Back-to-Back Longitudinal Serpentine Groove Slow Wave Structures
| 作者 | Huanyu Wang · Zhanliang Wang · Xing Liu · Jingrui Duan · Yuan Zheng · ZhiGang Lu |
| 期刊 | IEEE Transactions on Electron Devices |
| 出版日期 | 2025年6月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 多物理场耦合 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 背靠背蛇形槽波导 行波管 高频分析 粒子模拟 高速通信系统 |
语言:
中文摘要
基于传统蛇形槽波导慢波结构,提出一种新型背靠背蛇形槽波导结构(BTBSGW)。该结构在保持常规工作模式特性的同时,实现共用片状电子束的双对称结构,拓展了电子束配置并简化了电子枪设计。通过高频特性分析及粒子模拟,研究了其色散特性、电场分布、耦合阻抗和传输性能。仿真表明,在18.8 kV、0.27 A电子束条件下,器件在86.5–92 GHz频带内增益超20 dB,90 GHz处效率达5.97%,输出功率为302.06 W。采用纳米数控加工制备样件,冷测结果与仿真高度一致,验证了设计可行性,具备在高速通信系统中应用的潜力。
English Abstract
Based on the traditional serpentine groove waveguide (SGW) slow wave structure (SWS), a novel back-to-back SGW (BTBSGW) is proposed in this article. The BTBSGW maintains the operational mode characteristics of conventional SGW while implementing dual-symmetric SGW that shares a common sheet beam, achieving two key improvements: 1) expanding the beam configuration and 2) simplifying the gun design. Through comprehensive high-frequency analysis, the dispersion characteristics, electric field distribution, coupling impedance, and transmission characteristics of the BTBSGW were investigated. Particle-in-cell (PIC) simulations were further conducted to evaluate the stability, saturation power, gain characteristics, and electronic efficiency of the BTBSGW traveling wave tube (TWT). Specifically, the BTBSGW-TWT is expected to achieve a gain exceeding 20 dB across the 86.5–92-GHz frequency band under fixed electron beam conditions (18.8 kV, 0.27 A). Peak performance occurs at 90 GHz, achieving a conversion efficiency of 5.97% and an output power of 302.06 W. To validate the design, the BTBSGW was fabricated using nano-computer numerical control (CNC) processing technology and the cold-test experiment was carried out. The experimental transmission characteristics exhibited a high degree of agreement with the simulation results. Overall, the BTBSGW-TWT demonstrates promising potential for applications in high-speed communication systems.
S
SunView 深度解读
该W波段慢波结构技术虽聚焦毫米波器件,但其多物理场耦合设计方法对阳光电源具有跨领域借鉴价值。在ST储能变流器和SG光伏逆变器中,高频磁集成设计面临电磁-热-结构耦合挑战,文章的电磁场仿真与实验验证方法可应用于优化功率磁性元件设计。背靠背对称结构理念可启发PowerTitan储能系统的模块化双向变流器拓扑优化,提升功率密度。纳米数控加工精度控制经验对SiC/GaN功率模块的散热器微通道加工具有参考意义。多物理场协同仿真流程可强化iSolarCloud平台的热管理预测模型,提升系统可靠性预测精度。