← 返回
智能化与AI应用 ★ 4.0

一种快速准确的粗略方法用于预测调制信号激励下射频滤波器的多极子阈值

A Fast and Accurate Coarse Method for Multipactor Threshold Prediction of RF Filters Under Modulated Signal Excitation

作者 Carlos Alcaide Guillén · Miguel Rodríguez Jódar · Raúl Cervera Marín · Jose V. Morro · Pablo Soto · Òscar Monerris
期刊 IEEE Transactions on Electron Devices
出版日期 2025年4月
技术分类 智能化与AI应用
相关度评分 ★★★★ 4.0 / 5.0
关键词 微放电 粗估方法 调制信号 窄带样本 阈值估计
语言:

中文摘要

微放电是限制星载硬件系统性能的关键高功率效应。尽管现代粒子模拟器允许将任意几何结构和信号作为输入,但其实际应用通常仅限于连续波(CW)激励。遗憾的是,对输入调制信号进行微放电分析通常会导致过长的CPU计算时间,因为与电子群的演化时间相比,信号长度非常长。粗粒化方法是克服这一限制的有效途径,它能在较短的CPU计算时间内对微放电阈值做出较好的估计。然而,如果在分析输入信号之前不对其进行预处理,该方法就无法考虑频率相关性,因为它仅依据从单一频率提取的电子动力学信息进行运算,这会导致对如滤波器等窄带样本的预测出现偏差。本文通过考虑样本响应和调制信号的频谱分布来考虑频率相关性,对原始的粗粒化方法进行了扩展。扩展后的方法适用于估计由调制信号激励的窄带样本的微放电阈值,同时保留了粗粒化方法在简单性、效率和通用性方面的优势。本文将所提出的方法与实验室测量结果、粒子模拟器以及传统粗粒化方法的预测结果进行了对比,揭示了该新技术的优势及其应用范围。

English Abstract

Multipactor is a key high-power effect limiting the system performance for onboard satellite hardware. Although modern particle simulators admit arbitrary geometries and signals as inputs, their practical use is often limited to continuous-wave (CW) excitations. Unfortunately, the multipactor analysis for input-modulated signals normally leads to prohibitively large CPU times, as signal lengths are very large compared to the electron population’s evolution time. The Coarse Method is an elegant way of overcoming this limitation, providing a good estimate of the multipactor threshold in reduced CPU times. However, if the input signal is not preprocessed before being analyzed, the method is unable to account for the frequency dependence as it operates with electron dynamics information extracted at a single frequency, leading to biased predictions for narrowband samples as filters. This article proposes an extension to the original Coarse Method implementation by considering the sample response and the modulated signal spectral distribution to account for the frequency dependence. The resulting method is suitable for estimating the multipactor threshold of narrowband samples excited by modulated signals, while keeping the benefits in terms of simplicity, efficiency, and generality of the Coarse Method. The proposed approach is benchmarked against laboratory measurement results, as well as particle simulators and legacy Coarse Method predictions, revealing the advantages of the novel technique and its range of applications.
S

SunView 深度解读

从阳光电源的业务视角来看,这篇关于射频滤波器多载子放电阈值预测的论文虽然聚焦于卫星通信领域,但其底层的电磁效应分析方法对我司高功率电力电子设备具有重要的借鉴价值。

**技术相关性分析**

多载子放电本质上是高频电磁场环境下的电子雪崩效应。在光伏逆变器和储能变流器中,虽然工作频率远低于射频波段,但高压大功率开关器件在快速通断过程中同样会产生强电磁场,在特定条件下可能引发局部放电、电晕等类似的电子倍增现象。论文提出的"粗化方法"改进算法,通过考虑频谱分布和频率依赖性来加速仿真,这一思路可应用于我司产品的电磁兼容性(EMC)设计优化。

**潜在应用价值**

对于阳光电源正在拓展的高海拔、低气压应用场景(如高原光伏电站),空气稀薄环境下的局部放电风险显著增加。该论文的快速预测方法若能迁移至电力电子领域,可大幅缩短我司滤波器、母排等关键部件的电磁仿真周期,从目前数周级别压缩至数天,加速产品迭代。特别是在PWM调制信号作用下的滤波器设计中,考虑频谱特性的建模方法具有直接参考意义。

**技术挑战与建议**

该技术当前成熟度主要面向真空环境,向大气压电力设备的转化需要重新标定物理模型。建议我司研发团队关注其算法框架的通用性,探索与现有ANSYS等仿真平台的集成可能性,作为高可靠性产品设计的辅助工具,提升在极端工况下的产品竞争力。