← 返回
控制与算法
★ 5.0
基于隐马尔可夫跳变系统的异步滑模观测器逆变器供电系统鲁棒控制
Hidden Markov Jump System Based Robust Control of Inverter-Fed Power Systems With Asynchronous Sliding Mode Observer
| 作者 | Linyun Xiong · Sunhua Huang · Penghan Li · Ziqiang Wang · Muhammad Waseem Khan · Tao Niu |
| 期刊 | IEEE Transactions on Industrial Electronics |
| 出版日期 | 2025年7月 |
| 技术分类 | 控制与算法 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 电力系统 重大故障 鲁棒控制方案 隐马尔可夫跳跃系统 滑模控制器 |
语言:
中文摘要
电力系统需要具备一定的抵御自然灾害引发的故障的恢复能力。电力系统中重大故障的出现将显著改变网络拓扑结构,从而导致不可预测的系统动态特性,而现有模型难以对其进行描述,传统控制方案也难以应对。因此,本文提出了一种基于隐马尔可夫跳变系统(HMJS)的新型鲁棒控制方案,用于在重大故障情况下稳定电力系统以提供临时服务,其中利用 HMJS 模型来描述系统拓扑结构及其动态特性的随机切换。在此过程中,采用异步滑模观测器(ASMO)来处理系统状态与控制器状态不同步的问题。随后,提出了一种基于观测器的滑模控制器(OSMC),用于电力系统的短期服务提供和稳定控制。通过实验验证了 HMJS - OSMC 在处理三种典型电网故障时的性能和优越性。该方法的重要性在于,它解决了传统方法无法解决的高可再生能源渗透率电力系统故障后动态行为描述和临时服务提供的问题。
English Abstract
Power systems are required to show certain resilience against natural disaster induced contingencies. The advent of major contingencies in the power system will significantly change the network topology, thereby leading to unpredictable system dynamics that cannot be easily depicted by existing models and coped with traditional control schemes. Therefore, in this article, we proposed a novel robust control scheme based on hidden Markov jump system (HMJS) to stabilize the power system for temporary service provision under major contingencies, where the HMJS model is utilized to depict the stochastic switching of the system topology and its dynamics. In this process, the non-synchronization between the system’s state and the controller’s states are coped with an asynchronous sliding mode observer (ASMO). Subsequently, an observer based sliding mode controller (OSMC) is proposed for the short term service provision and stabilization of the power system. Experiments are performed to validate the performance and superiorities of the HMJS-OSMC in addressing three typical grid contingencies. The importance of the proposed method lies in that it solves the problems of post-contingency dynamic behavior depiction and temporary service provision for renewables-penetrated power systems that cannot be dealt with conventional approaches.
S
SunView 深度解读
从阳光电源的业务视角来看,这项基于隐马尔可夫跳变系统的鲁棒控制技术具有重要的战略价值。该技术针对电网重大故障场景下的拓扑突变问题,提出了异步滑模观测器与控制器协同方案,这与我司在高比例新能源并网场景下面临的核心挑战高度契合。
在光伏逆变器领域,该技术可显著提升我司产品在电网故障穿越(LVRT/HVRT)场景下的动态响应能力。传统控制方案往往基于确定性模型,难以应对台风、地震等自然灾害导致的电网拓扑随机切换。而HMJS模型能够刻画这种随机性,结合滑模控制的鲁棒特性,可使逆变器在极端工况下仍能提供暂态支撑,这对我司打造高可靠性产品具有直接价值。
对于储能系统业务,该技术的应用前景更为广阔。储能系统作为电网稳定的关键资源,在灾害场景下需承担孤岛运行、黑启动等任务。异步观测器设计解决了系统状态与控制器不同步的实际工程问题,这在多储能单元协同控制中尤为重要,可提升我司液流电池、锂电储能等产品在微电网场景的应用竞争力。
技术挑战方面,HMJS模型的转移概率矩阵需要大量历史数据训练,且滑模控制的抖振问题在实际工程中需要抑制。建议我司可结合现有的数百GW装机数据积累,开展联合研发,将该技术嵌入下一代智能逆变器和储能变流器的控制平台中,形成差异化的抗扰动技术优势,支撑"源网荷储"一体化解决方案的竞争力提升。