← 返回
光伏发电技术
★ 5.0
基于鲁棒广义改进型Blake-Zisserman与自适应向量滤波器的控制架构以提升并网光伏系统性能
Robust Generalized Modified Blake–Zisserman and Adaptive Vectorial Filter-Based Control Architecture for Enhanced Performance of a Grid-Tied PV System
| 作者 | Markala Karthik · Venkata Ramana Naik N · Anup Kumar Panda |
| 期刊 | IEEE Transactions on Industrial Electronics |
| 出版日期 | 2025年4月 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 并网光伏系统 自适应矢量滤波器 广义修正Blake - Zisserman自适应滤波器 电能质量 功率管理 |
语言:
中文摘要
为了在并网光伏系统(GTPVS)的非理想电网条件下提高电网电能质量(PQ),本文着重开发一种采用自适应矢量滤波器(AVF)和鲁棒广义修正布莱克 - 齐瑟曼自适应滤波器(GMBZAF)的控制架构。该架构通过赋予GTPVS多功能能力,解决非理想电网电压、电流谐波、不平衡负载和太阳辐照度变化等问题,以在电网侧提供具有单位功率因数的平衡正弦电流,并在捕获最大光伏功率的同时,实现光伏系统、公用电网和连接到公共耦合点(PCC)的本地负载之间的有效功率管理。AVF用于对电网畸变电压进行滤波,以提取电压的基频分量;而GMBZAF用于对畸变负载电流进行滤波,以在更快的动态响应和最小振荡幅度的情况下估计负载电流基波分量的峰值。在光伏零发电期间,电压源变流器(VSC)与直流母线电容一起作为配电静止无功补偿器(DSTATCOM)运行,以提高系统利用率。GTPVS确保电网电流的总谐波畸变率(THD)符合IEEE 519 - 2022标准。在MATLAB/Simulink中开发了GTPVS及其所提出的控制架构,并在实验室搭建的原型上验证了其性能。此外,还从代价函数、计算复杂度方面进行了对比分析,并从振荡幅度、调节时间、均方差(MSD)、计算时间和误差指标方法等方面进行了定量比较,以评估所提出的控制架构相对于其他控制架构的适应性。
English Abstract
To enhance the grid power quality (PQ) during nonideal grid conditions in a grid-tied photovoltaic system (GTPVS), this article focuses on developing a control architecture using an adaptive vectorial filter (AVF) and robust generalized modified Blake–Zisserman adaptive filter (GMBZAF) that addresses the issues of nonideal grid voltages, current harmonics, unbalanced loading, and solar irradiance variation by inculcating the multifunctional capabilities into GTPVS to deliver balanced sinusoidal currents with the unity power factor at the grid side and achieve effective power management among PV system, utility grid, and local loads coupled to point of common coupling (PCC) while capturing maximum PV power. The AVF is employed to filter the grid-distorted voltages for the extraction of fundamental frequency components of voltages, while the GMBZAF is employed to filter the distorted load current for the estimation of peak magnitudes of the fundamental component of load current at a faster dynamic response with least magnitude of oscillations. During zero PV power generation, the voltage source converter (VSC), together with the dc-link capacitor, operates as a distribution static compensator (DSTATCOM) to enhance the utilization of the system. The GTPVS ensures total harmonic distortion (THD) of the grid current as specified by IEEE 519-2022 standard. The GTPVS, together with the proposed control architecture, is developed in MATLAB/Simulink, and its performance is validated on a prototype developed in the laboratory. Further, comparative analysis in terms of the cost function, computational complexity, and the quantitative comparison in terms of the magnitude of oscillations, settling time, mean square deviation (MSD), computational time, and error metrics approach is provided to assess the adaptability of the proposed control architecture over other control architectures.
S
SunView 深度解读
从阳光电源的业务视角来看,该论文提出的自适应矢量滤波器(AVF)与改进型Blake-Zisserman自适应滤波器(GMBZAF)组合控制架构,对提升并网光伏系统在复杂电网环境下的性能具有重要参考价值。
该技术的核心优势在于多功能集成化设计。控制架构能同时应对电网电压畸变、电流谐波、负载不平衡及光照波动等多重挑战,这与阳光电源逆变器产品追求的高适应性目标高度契合。特别是其在零光伏发电时段将VSC转换为DSTATCOM模式运行的设计思路,显著提升了系统利用率,这对阳光电源推广"光储一体化"解决方案具有启发意义,可增强设备在全时段的经济价值。
从技术成熟度评估,该方案已完成MATLAB仿真和实验室样机验证,并满足IEEE 519-2022标准的THD要求,具备较好的工程化基础。GMBZAF算法在动态响应速度和振荡抑制方面的优势,可直接应用于阳光电源新一代逆变器的控制算法优化,提升产品在弱电网环境下的并网性能。
然而,技术挑战也不容忽视。复杂滤波算法的实时计算对DSP/FPGA硬件性能要求较高,可能增加成本;多场景自适应参数整定需要大量现场数据积累。对阳光电源而言,机遇在于可将此技术与现有的智能化运维平台结合,通过云端大数据优化算法参数库,形成差异化竞争优势。建议重点关注算法轻量化改进和与储能系统的协同控制策略,以适配分布式光伏及工商业储能市场的快速增长需求。