← 返回
光伏发电技术 ★ 5.0

用于氢气生产的混合光伏-光伏/热驱动质子交换膜水电解系统:热管理的实验研究及其作用

Hybrid PV-PV/T driven proton exchange membrane water electrolysis systems for hydrogen production: Experimental investigation and the role of thermal management

作者 Fei Lai · Mingyuan Wanga · Jinzhi Zhoua · Jian Songb · Yanping Yuana
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 344 卷
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Experimental study of solar driven PEM electrolysis system with thermal management.
语言:

中文摘要

摘要 太阳能驱动的水电解制氢是一种绿色且高效的能源技术。关键部件,即光伏(PV)组件和电解槽的效率,与其工作温度密切相关,这表明通过有效的热管理有望提升系统整体性能。本研究构建了一种混合光伏(PV)与光伏/光热(PV/T)驱动的质子交换膜水电解(PEMWE)系统,并集成了相变材料(PCM)用于热管理。采用PV/T模块可在不牺牲发电量的前提下,同时产生电能和热能,为PEMWE系统的热管理提供额外热源。通过实验研究评估了系统在不同太阳辐射条件下的连续运行性能,重点分析了热管理对一系列性能指标的影响,例如电解槽能量效率、产氢量以及太阳能到氢能的转换效率。结果表明,利用PCM水箱对进水进行预热以提高进水温度,可降低电解槽所需的工作电压,从而减少制氢的比能耗。在日均太阳辐照度为170 W/m²的条件下,系统实现了最高达7.6%的日均太阳能到氢能转换效率。在测试期间,基于总面积为49 m²的太阳能电池阵列,电解槽平均效率达到75.5%,单日最大产氢量为2,464升。此外,还进行了初步的经济性分析,发现系统平衡部件(BOP)是主要的成本驱动因素。本研究结果为优化太阳能驱动的PEMWE系统奠定了坚实基础,并为太阳能制氢技术的规模化应用提供了切实可行的技术参考。

English Abstract

Abstract Solar-driven water electrolysis for hydrogen production is a green and effective technology. Efficiency of the key components, i.e. photovoltaic (PV) modules and the electrolyser, are closely related to their operating temperatures, which implies the potential for performance improvements through effective thermal management. In this study, we establish a hybrid PV and photovoltaic/thermal (PV/T) driven proton exchange membrane water electrolysis (PEMWE) system, integrating phase change materials (PCMs) for thermal management. The use of PV/T modules, which enables simultaneous electrical and thermal energy generation, provides additional heat for PEMWE thermal management without compromising electricity production. Experimental investigation is performed to assess system continuous performance under varying solar conditions, with a focus on the impact of thermal management on a list of performance indicators, e.g., electrolyser energy efficiency, hydrogen output, and solar-to-hydrogen efficiency. The results show that higher feedwater temperatures, achieved by PCM water tank preheating, can reduce the required electrolyser voltage and obtain lower specific energy consumption for hydrogen production. A maximum daily solar-to-hydrogen efficiency of 7.6 % is achieved with a daily average solar irradiance of 170 W/m 2 . During the testing period, an average electrolyser efficiency of 75.5 % and a maximum daily hydrogen production of 2,464 L are obtained from a solar array with a cell area of 49 m 2 . A preliminary economic analysis is also conducted, identifying the balance of plant (BOP) as the primary cost driver. These findings lay a solid foundation for optimising solar driven PEMWE systems and provide practical insights for scaling up solar-to-hydrogen technologies.
S

SunView 深度解读

该光伏制氢系统研究对阳光电源SG系列光伏逆变器与储能系统集成具有重要价值。文章验证的PV/T热管理技术可优化我司1500V光伏系统在制氢场景的能量利用效率,7.6%氢转化效率为系统设计提供基准。相变材料热管理思路可借鉴至PowerTitan储能系统温控优化,提升电解槽能效75.5%的案例印证了精准功率调节的重要性,这与我司MPPT优化技术和iSolarCloud智能运维平台的预测性控制能力高度契合,可拓展光伏制氢一体化解决方案。