← 返回
储能系统技术 ★ 5.0

基于CO2卡诺电池技术的长时储能系统优化设计

Optimal design of CO2 Carnot battery technology for long duration energy storage

作者 Simone Girell · Dario Alfan · Ettore Morosin · Marco Astolf
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 344 卷
技术分类 储能系统技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Transcritical CO2 Carnot batteries are investigated for long duration energy storage.
语言:

中文摘要

摘要 基于CO2的卡诺电池系统作为一种大规模、长时储能的有前景解决方案,兼具高往返效率和不受地质条件限制的优势,同时还可实现热能与冷能的共同储存。本文探讨了基于CO2的卡诺电池系统的最优设计准则,重点研究在充放电阶段共用换热器(即高温储热、低温储冷及回热器)且采用显热型固体介质作为高温储热介质的系统构型。系统的设计与性能在MATLAB环境中建模分析,针对广泛的运行工况,结合电厂部件性能的实际假设,对往返效率、能量密度以及系统占地面积进行了系统性研究。通过对数百个模拟案例进行优化分析的结果表明,在循环最高压力相对较低(约150 bar)且循环最高温度较低(低于130 °C)的条件下,该电池系统的往返效率已可超过55%,当低温储冷温度为−30 °C时,最高效率可突破60%。相比之下,能量密度则显著受益于将最高压力提升至250 bar,这得益于高温热储能中更大的温差范围。在此类工况下,系统占地面积低于20 m²/MWhₑₗ,当低温储冷温度为0 °C时,能量密度可达11 kWhₑₗ/m³。

English Abstract

Abstract CO 2 -based Carnot battery systems are a promising solution for large scale, long duration energy storage, as they combine high round-trip efficiency with the absence of geological constraints, also enabling the storage of both hot and cold thermal energy. In this work, the optimal design criteria for a CO 2 -based Carnot battery are discussed, focusing on configurations where heat exchangers are shared between the charging and discharging phase (i.e. hot storage, cold storage and recuperator) and employing a hot storage based on a sensible solid medium. The system design and performances are modelled in MATLAB, investigating the round-trip efficiency, the energy density and the system footprint across a wide range of operative conditions and adopting realistic assumptions for the plant components performance. The optimized results, obtained from hundreds of simulated cases, demonstrate that with moderately low cycle maximum pressures (around 150 bar) and low cycle maximum temperatures (below 130 °C), the battery can already achieve a round trip efficiency over 55 %, reaching maximum values greater than 60 % for low cold storage temperatures (−30 °C). Differently, the energy density largely benefits from increasing the maximum pressure up to 250 bar, thanks to larger temperature variation in the hot thermal storage. Under these conditions, the system footprint is lower than 20 m 2 /MWh el , with energy densities as high as 11 kWh el /m 3 for a cold storage temperature of 0 °C.
S

SunView 深度解读

CO2卡诺电池技术为长时储能提供新思路,其55-60%往返效率与阳光电源PowerTitan液冷储能系统形成互补。该技术的热冷双向储能特性可启发ST系列PCS在冷热电三联供场景的拓展应用。其150-250bar压力优化设计理念可借鉴于储能系统热管理优化,提升能量密度至11kWh/m³的目标与阳光电源集成式储能方案的紧凑化设计方向一致,对iSolarCloud平台的多元储能技术监控具有参考价值。