← 返回
储能系统技术
★ 5.0
基于高频链MMC的背靠背连接电力电子变压器对直流链路电压纹波的敏感性分析
Sensitivity Analysis of the High-Frequency-Link MMC to DC Link Voltage Ripples in a Back-to-Back Connected MMC-Based Power Electronic Transformer
| 作者 | Vishnu Narayan Vipin · Ned Mohan |
| 期刊 | IEEE Transactions on Power Electronics |
| 出版日期 | 2025年2月 |
| 技术分类 | 储能系统技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 可再生能源 储能 中压电网 高频链MMC 电压纹波 |
语言:
中文摘要
将可再生能源和储能设备接入中压电网(5 - 34.5 千伏),可实现高功率输出,同时将传导损耗降至最低。近期的变流器拓扑结构采用级联低压(LV)子模块(SM)的方式来满足电网电压等级要求,从而能够从低压储能单元和光伏阵列中提取电能。本文重点研究一种具有公共可控高压(HV)直流母线的拓扑结构,该母线同时连接电网侧模块化多电平换流器(GS - MMC)和高频链模块化多电平换流器(HF - MMC)。储能单元以及风能和太阳能等可再生能源通过高频(HF)升压变压器的低压侧供电,电能经 HF - MMC 和 GS - MMC 处理后接入电网。在这种配置中,由于 GS - MMC 采用脉冲宽度调制(PWM)方案来控制其子模块的开关,会向公共高压直流母线注入电压纹波。这种注入的纹波会与 HF - MMC 子模块的开关调制方案相互作用,导致 HF - MMC 电容器出现电压振荡,并使电流在其相臂中流动。本文提供了一个数学基础,用以解释 HF - MMC 响应对于不同频率电压纹波的敏感性。同时,为 HF - MMC 相臂频率响应中观察到的谐振峰值提供了理论支持,阐述了独特谐振现象背后的机制,并给出了这些谐振频率的闭式表达式。为此,本文还给出了 HF - MMC 相臂的近似等效电路模型。通过 MATLAB/Simulink 仿真、基于 OPAL - RT 的硬件在环实时仿真,以及使用缩小比例的实验室样机获得的实验结果,验证了该分析的有效性。
English Abstract
Integrating renewables and storage to the medium voltage grid (5–34.5 kV), allows for high power export while minimizing conduction losses. Recent converter topologies involve cascading low-voltage (LV) submodules (SMs) to meet grid voltage levels, enabling power extraction from LV storage units and PV arrays. This article focuses on studying such a topology with a common controllable high voltage (HV) dc link for the grid side MMC (GS-MMC) and the high-frequency link MMC (HF-MMC). The storage units and renewable sources like wind and solar provide power through the LV side of a high-frequency (HF) step-up transformer, which is processed by the HF-MMC and GS-MMC, before reaching the grid. In this configuration, GS-MMC injects voltage ripples into the common HV dc link due to the employed pulse width modulation (PWM) scheme for switching its SMs. This injected ripple interacts with the switching modulation scheme of the HF-MMC SMs, resulting in voltage oscillations in the HF-MMC capacitors and current flow through its phase legs. The article provides a mathematical basis that explains the sensitivity of the HF-MMC response to different frequencies of voltage ripple. It also offers theoretical support for the observed resonant peaks in the frequency response of the HF-MMC phase legs, the mechanism behind the unique resonance and closed-form expressions for these resonant frequencies. An approximate equivalent circuit model for the HF-MMC phase legs is provided towards this end. The analysis is validated through MATLAB/Simulink simulations and OPAL-RT based Hardware-In-Loop real-time simulations, as well as experimental results obtained using a scaled-down laboratory prototype.
S
SunView 深度解读
从阳光电源中压并网和储能集成业务视角来看,这项关于高频链模块化多电平换流器(MMC)的研究具有重要的技术参考价值。该研究聚焦于背靠背MMC构成的电力电子变压器拓扑,这与我们在5-35kV中压光储系统中面临的技术挑战高度契合。
该技术方案通过级联低压子模块实现中压等级,能够直接整合低压储能单元和光伏阵列,这与阳光电源PowerTitan系列储能系统和1500V光伏逆变器的集成应用场景存在技术协同。研究揭示的核心问题——并网侧MMC的PWM调制在直流母线上产生的电压纹波会与高频侧MMC产生交互,导致电容电压振荡和相桥电流波动——正是我们在大容量储能变流器和光储一体化系统设计中需要重点关注的稳定性问题。
论文提供的数学分析框架和谐振频率闭式表达式,对优化我们的控制算法和滤波器设计具有直接指导意义。特别是在开发下一代集成式PCS(储能变流器)和混合逆变器产品时,可借鉴其等效电路模型来预测系统频率响应特性,提前规避谐振风险。
从技术成熟度看,研究已通过仿真和硬件在环测试验证,但缩比原型与实际MW级产品仍有工程化距离。对阳光电源而言,主要机遇在于:可将此理论应用于提升中压直挂储能系统的电能质量和并网稳定性,增强产品在风光储多能互补项目中的竞争力。挑战则包括高频变压器的损耗优化、子模块数量增加带来的控制复杂度,以及如何在保证成本优势前提下实现技术落地。建议将相关分析方法纳入我们的仿真工具链,用于指导1500V+储能系统的谐波抑制策略开发。