← 返回
基于叠层功率模块的容量可扩展级联多电平储能系统
A Capacity-Expandable Cascaded Multilevel Energy Storage System Based on Laminated Power Modules
| 作者 | Jianwen Zhang · Xilian Huang · Jianqiao Zhou · Xinming Fan · Gang Shi · Jiajie Zang |
| 期刊 | IEEE Transactions on Power Electronics |
| 出版日期 | 2024年9月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 功率模块 DAB 多电平 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 集中式风光发电 大容量储能系统 级联H桥储能系统 可扩容拓扑 充放电功率控制 |
语言:
中文摘要
在集中式风电和光伏发电的大规模开发中,解决其随机性、波动性和间歇性问题对电网至关重要。部署大容量储能系统是一种有效解决方案。当前的大容量功率变换系统(PCS)包括低压并联和中压串联扩展两种方式。低压并联方法虽简单,但在大型应用的多机并联运行方面面临挑战。此外,它还需要使用工频变压器进行电压变换,导致成本高、占地面积大且效率较低。相比之下,中压串联扩展方式主要采用级联 H 桥储能系统(CHB - ESS),具有诸多优势。在该系统中,电池并联连接到子模块的直流母线。H 桥子模块的串联形成中压接口,可实现直接并网、电池分段控制以及无变压器运行。然而,随着容量需求的增加,单个 CHB - ESS 单元会受到电网电压和单个电池容量的限制。为此,本文提出了一种基于 CHB - ESS 结构的可扩展容量的储能系统拓扑。新设计采用层叠功率模块,每个模块包含两个独立的电池组。这种拓扑在相同电网电压等级下使传统 CHB - ESS 的容量翻倍。它还保留了无变压器运行、模块化和可扩展性等关键优势。本文还提出了解耦充放电功率控制策略。
English Abstract
In the large-scale development of centralized wind and photovoltaic (PV) power generation, addressing their randomness, volatility, and intermittency is crucial for the electrical grid. Deploying large-capacity energy storage systems is an effective solution. Current large-capacity power conversion systems (PCS) include low-voltage parallel and medium-voltage series expansion approaches. While the low-voltage parallel method is simple, it faces challenges in multi-machine parallel operation for large applications. It also requires voltage scaling with power frequency transformers, resulting in high costs, large land use, and lower efficiency. In contrast, the medium-voltage series expansion approach, mainly using Cascaded H-Bridge Energy Storage Systems (CHB-ESS), has several advantages. In this system, batteries are connected in parallel to the submodule's DC bus. The serial connection of H-bridge submodules forms a medium-voltage interface, allowing direct grid integration, segmented battery control, and transformer-less operation. However, as capacity demand increases, a single CHB-ESS unit is limited by grid voltage and individual battery capacity. To address this, this paper proposes a capacity-expandable ESS topology based on the CHB-ESS structure. The new design uses laminated power modules, each with two independent battery groups. This topology doubles the capacity of conventional CHB-ESS at the same grid voltage level. It also retains key benefits such as transformer-less operation, modularity, and scalability. The paper also proposes strategies for decoupled charging and discharging power control.
S
SunView 深度解读
从阳光电源储能系统业务视角来看,这项基于叠层功率模块的级联多电平储能技术具有重要的战略价值。该技术针对大规模集中式风光发电并网的核心痛点,提出了容量可扩展的CHB-ESS改进方案,与我司在大容量储能PCS领域的技术路线高度契合。
该技术的核心创新在于通过叠层功率模块实现单机容量翻倍,这直接解决了当前中压串联扩容方案受限于电网电压等级和单体电池容量的瓶颈问题。相比传统低压并联方案需要工频变压器升压的架构,这种无变压器直挂中压电网的拓扑结构能够显著降低系统成本、占地面积和能量损耗,这与阳光电源一直追求的高效率、高功率密度设计理念完全吻合。对于我司正在推进的MW级以上储能项目,该技术可有效提升产品竞争力。
从技术成熟度评估,CHB-ESS本身已是相对成熟的技术路径,阳光电源在级联多电平逆变器领域积累深厚。该方案的叠层模块设计和独立电池组管理在工程实现上具有可行性,但需要关注几个关键挑战:一是双电池组的功率解耦控制策略在实际工况下的鲁棒性;二是模块化设计带来的热管理和可靠性问题;三是系统扩容时的电池一致性管理。
建议将此技术纳入我司下一代大容量储能PCS的研发规划,特别是针对沙戈荒等大基地项目的百MW级储能需求,该技术的模块化和可扩展特性将带来显著的工程价值和成本优势。