← 返回
储能系统技术
★ 5.0
基于多目标优化的重载卡车双燃料电池系统分层能量管理策略
Hierarchical energy management strategy for dual fuel cell systems in heavy-duty trucks based on multi-objective optimization
| 作者 | Zhou Chena · Xiaohua Wuab · Jianwei Maoa · Lei Gaoc · Jibin Yang · Pengyi Deng · Pengfei Maa · Xuandong Guod · Zhanfeng Fane |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 345 卷 |
| 技术分类 | 储能系统技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Power distribution between dual fuel cell systems and a battery system. |
语言:
中文摘要
摘要 多个燃料电池系统与电池系统集成已成为长途重载卡车领先的动力系统配置。然而,多源架构固有的复杂性为有效的能量管理带来了重大挑战。当前针对此类混合系统的能量管理策略通常依赖于单目标优化,这限制了其在燃料效率和系统耐久性之间有效平衡的能力,特别是在动态运行条件下。本研究提出了一种双层能量管理策略,旨在优化多个燃料电池系统与电池系统之间的功率分配,从而在燃油经济性和系统寿命之间实现更优的权衡。所提出的策略包含两个层次:底层在两个并联的燃料电池子系统之间执行最优功率分配,上层则采用Q学习算法调节聚合后的燃料电池系统输出与电池系统之间的功率分配。与两种广泛采用的、主要以燃油经济性为目标的双层策略相比,所提出的方法分别将系统退化程度降低了41.57%和24.64%,而燃料消耗仅略微增加,分别为2.96%和0.06%。硬件在环仿真进一步验证了该策略在不同驾驶循环下的实时性能。通过成功平衡燃料效率与系统耐久性,该双层能量管理策略为燃料电池驱动的重载卡车的能量管理提供了一种有前景的解决方案。
English Abstract
Abstract Multiple fuel cell systems integrated with a battery system have become a leading powertrain configuration for long-haul heavy-duty trucks. However, the inherent complexity of the multi-source architecture poses substantial challenges for effective energy management. Current energy management strategies for such hybrid systems often rely on single-objective optimization, which limits their ability to effectively balance fuel efficiency and system durability, particularly under dynamic operating conditions. This study presents a dual-layer energy management strategy aimed at optimizing power distribution between multiple fuel cell systems and a battery system, thereby achieving improved trade-offs between fuel economy and system lifespan. The proposed strategy comprises two layers: the lower layer performs optimal power allocation between the two parallel fuel cell subsystems, while the upper layer employs Q-learning to regulate power distribution between the aggregated fuel cell system output and the battery system. Compared to two widely adopted dual-layer strategies that primarily target fuel economy, the proposed approach achieves a reduction in system degradation by 41.57% and 24.64%, respectively, while incurring only marginal increases in fuel consumption, 2.96% and 0.06%. Hardware-in-the-loop simulations further confirm the real-time performance of the proposed strategy across varying driving cycles. By successfully balancing fuel efficiency and system durability, the dual-layer energy management strategy presents a promising solution for energy management in fuel cell-powered heavy-duty trucks.
S
SunView 深度解读
该双层能源管理策略对阳光电源储能及充电桩产品具有重要借鉴价值。其多目标优化思路可应用于ST系列PCS的多电源协调控制,平衡电池寿命与系统效率。Q-learning自适应算法可集成至iSolarCloud平台,实现储能系统的预测性维护和动态功率分配。对于重卡充电站产品,该分层架构可优化充电桩与储能系统的协同调度,在降低设备退化的同时保持高能效,延长PowerTitan等储能产品的全生命周期经济性。