← 返回
控制与算法
★ 4.0
大规模电力系统暂态稳定域估计 第Ⅰ部分:Koopman算子与降阶模型
Estimating Transient Stability Regions of Large-scale Power Systems Part Ⅰ: Koopman Operator and Reduced-order Model
| 作者 | Yuqing LinTianhao WenLei ChenQ.H.WuYang Liu |
| 期刊 | 中国电机工程学会热电联产 |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 45 卷 第 1 期 |
| 技术分类 | 控制与算法 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | Yuqing Lin Tianhao Wen Lei Chen Q.H.Wu Yang Liu 中国电机工程学会电力与能源系统学报(英文版) CSEE Journal of Power and Energy Systems |
语言:
中文摘要
本文提出一种基于Koopman算子的模型降阶方法,用于大规模电力系统暂态稳定域的估计。该方法无需线性化,通过在无限维可观测空间中定义的Koopman算子捕捉原非线性系统的主导模态,并结合Galerkin投影构建低阶非线性动态模型。为高精度逼近Koopman算子,引入多项式多轨迹核动态模态分解算法,其性能优于传统DMD方法。在IEEE 39节点和68节点系统上的仿真验证表明,所提方法在定性和定量分析方面均显著优于模态分析法。
English Abstract
This paper presents an estimation of transient stability regions for large-scale power systems.In Part Ⅰ,a Koopman operator based model reduction(KOMR)method is proposed to derive a low-order dynamical model with reasonable accuracy for transient stability analysis of large-scale power systems.Unlike traditional reduction methods based on linearized models,the proposed method does not require linearization,but captures dominant modes of the original nonlinear dynamics by employing a Koopman operator defined in an infinite-dimensional observable space.Combined with the Galerkin projection,the obtained dominant Koopman eigenvalues and modes produce a reduced-order nonlinear model.To approximate the Koopman operator with sufficient accuracy,we introduce a Polynomial-based Multi-trajectory Kernel Dynamic Mode Decomposition(PMK-DMD)algorithm,which outperforms traditional DMD in various scenarios.In the end,the proposed method is applied to the IEEE 10-machine-39-bus power system and IEEE 16-machine-68-bus power system,which demonstrates that our method is significantly superior to the modal analysis method in both qualitative and quantitative aspects.
S
SunView 深度解读
该Koopman算子降阶建模技术对阳光电源构网型储能系统具有重要应用价值。在PowerTitan大型储能系统并网场景中,传统暂态稳定分析面临高维非线性建模难题,该方法通过多项式核DMD算法可精确捕捉储能变流器与电网交互的主导动态模态,无需线性化即可构建低阶模型快速评估暂态稳定域边界。可直接应用于ST系列储能变流器的GFM控制参数优化,在虚拟同步机VSG控制中实时预测扰动后的稳定裕度,指导虚拟惯量和阻尼系数整定。该技术还可集成至iSolarCloud平台,实现多储能电站协同控制的在线稳定性评估,显著提升弱电网环境下的并网适应性与故障穿越能力。