← 返回
储能系统技术
★ 5.0
一种简单、低成本且可扩展的SbSn@C复合材料合成方法用于稳定的钠离子电池
A simple, low-cost and scalable synthesis of SbSn@C composite for stable sodium-ion batteries
| 作者 | Hao Feng · Xiaohua Li · Ruijie Guo · Yuchen Wei |
| 期刊 | Journal of Materials Science: Materials in Electronics |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 36.0 卷 |
| 技术分类 | 储能系统技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 钠离子电池 负极材料 合金类电极 体积膨胀 循环稳定性 |
语言:
中文摘要
由于钠资源具有低氧化还原电位、储量丰富和成本低廉等优势,钠离子电池(SIBs)被认为是当前主流储能装置——锂离子电池的一种有前景的替代方案。然而,开发适用于实际应用的负极材料仍是钠离子电池面临的一大挑战。合金类负极材料虽然具有高比容量和低工作电压的优点,但其固有的体积膨胀问题会导致容量迅速衰减和循环稳定性差。针对这一问题,本文通过固相还原氯化物的方法成功合成了一种新型碳包覆合金复合材料(SbSn@C)。表面形貌分析表明,该SbSn@C复合材料具有多孔结构,并包裹有20–30 nm厚的碳层,能够有效缓解充放电过程中的体积膨胀。此外,所制备的SbSn@C复合材料表现出优异的电化学性能,在100次循环后仍保持450.5 mAh g−1的良好可逆容量,容量保持率达90%。预期该合成策略为发展低成本、环境友好的钠离子电池提供了基础。
English Abstract
With low redox potential, natural abundance and cost-effective of sodium resources, sodium-ion batteries (SIBs) are considered as a promising alternative for the currently dominant energy storage devices, i.e., lithium-ion batteries. However, developing suitable anode materials is still a challenge for the practical applications of SIBs. Alloy anodes have high specific capacity and low operating voltage, but the inherent volume expansion results in rapid capacity decay and poor cycling stability. Herein, focus on this issue, a novel carbon-coated alloy composite (SbSn@C) was synthesized by the solid-phase reduction of chloride method. Surface morphology analysis confirms that the SbSn@C composite exhibits a porous structure with a carbon layer of 20–30 nm, which can accommodate volume expansion. Furthermore, the synthesized SbSn@C composite exhibits impressive electrochemical performance with a good reversible capacity (450.5 mAh g −1 after 100 cycles, 90% capacity retention). As expected, such synthesis strategy provides a basis for the development of cost-effective and environmentally friendly sodium-ion batteries.
S
SunView 深度解读
该SbSn@C复合材料钠离子电池负极技术对阳光电源储能系统具有重要应用价值。其低成本、高循环稳定性(100次循环容量保持率90%)特性可应用于ST系列储能变流器和PowerTitan系统,降低电池成本并提升系统经济性。碳包覆层缓解体积膨胀的策略为大规模储能电池设计提供参考,有助于优化ESS解决方案的全生命周期性能,推动钠离子电池在电网侧和工商业储能场景的商业化应用。