← 返回
储能系统技术
★ 5.0
环保型硝酸锂掺杂瓜尔胶聚合物电解质用于储能器件
Eco-friendly guar gum polymer electrolytes doped with lithium nitrate for energy storage devices
| 作者 | Madeswaran Saminathan |
| 期刊 | Journal of Materials Science: Materials in Electronics |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 36.0 卷 |
| 技术分类 | 储能系统技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 瓜尔胶 硝酸锂 固体聚合物电解质 离子电导率 非晶态结构 |
语言:
中文摘要
通过溶液浇铸法将硝酸锂溶解于聚合物基质中,制备出一种基于天然瓜尔胶的固态聚合物电解质。获得了含不同浓度硝酸锂的自支撑瓜尔胶膜。X射线分析表明所制备的样品具有高度非晶态结构。傅里叶变换红外光谱(FTIR)分析证实了瓜尔胶与盐之间的络合作用。通过电化学阻抗谱测定离子电导率,其中含有1.2 g瓜尔胶和0.4 g硝酸锂的样品表现出最高的离子电导率,达1.07 × 10⁻³ S cm⁻¹。采用热重分析(TGA)研究聚合物电解质的热稳定性。介电谱用于测定介电常数和介电损耗,从而深入了解电解质的极化特性。最高电导率电解质的离子电导率随温度倒数的变化曲线符合阿伦尼乌斯关系。通过线性扫描伏安法(LSV)测试,最优离子导电样品的电化学稳定窗口为3.2 V,其离子迁移数测定值为0.96,表明绝大多数载流子为离子。
English Abstract
A natural guar gum-based solid polymer electrolyte is developed by dissolving Lithium Nitrate in the polymer medium using solution casting method. Free-standing membranes of guar gum with various concentrations of lithium nitrate are obtained. X-ray analysis reveals that the prepared sample is highly amorphous. Complexation of guar gum with salt is verified by FTIR analysis. The ionic conductivity is calculated through electrochemical impedance spectroscopy and the highest ionic conductivity of 1.07 × 10 –3 Scm −1 is exhibited by the sample containing 1.2 g guar gum and 0.4 g of Lithium nitrate. TGA study is carried out to study the thermal stability of the polymer electrolytes. The dielectric spectra are utilised to determine the dielectric constant and loss, offering important insights into the polarisation characteristics of the electrolytes. The plot of ionic conductivity of the highest conducting electrolyte versus inverse temperature is of Arrhenius type. Through LSV studies, the electrochemical stability of the optimum ionic conducting sample is 3.2 V and the transference number measurement for the sample is found to be 0.96 indicating that majority of charge carriers are ions.
S
SunView 深度解读
该瓜尔胶基固态聚合物电解质技术对阳光电源储能系统具有前瞻价值。其1.07×10⁻³ S/cm的离子电导率、3.2V电化学稳定窗口及0.96的离子迁移数,可为PowerTitan储能系统和ST系列PCS的电池安全性提升提供新思路。天然高分子材料的环保特性契合ESS绿色制造方向,固态电解质技术可降低热失控风险,优化BMS热管理策略。建议关注其在大规模储能电池模组中的循环寿命表现,探索与三元/磷酸铁锂电池的兼容性,为下一代安全型储能系统技术储备奠定基础。