← 返回
光伏发电技术 ★ 5.0

钾掺杂对ZnS薄膜结构、光学和光电性能的影响及其在光伏中的应用

Influence of potassium doping on the structural, optical, and optoelectrical properties of ZnS thin films for photovoltaic applications

作者 Reim A. Almotiri
期刊 Journal of Materials Science: Materials in Electronics
出版日期 2025年1月
卷/期 第 36.0 卷
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 硫化锌 雾化喷雾热解法 钾掺杂 电导率 光伏器件
语言:

中文摘要

硫化锌(ZnS)是一种重要的n型半导体,具有优异的电学和光学特性。本研究采用经济型喷雾热解法,通过雾化喷雾热解技术制备了未掺杂及不同钾掺杂浓度(2.5、5和7.5 wt%)的ZnS薄膜。XRD结果表明,ZnS及钾掺杂ZnS薄膜均呈现六方结构。对结构特性的分析显示,随着钾含量从2.5 wt%增加至7.5 wt%,ZnS及钾掺杂ZnS薄膜的晶粒尺寸(D)逐渐增大。同时,随着ZnS薄膜中钾浓度的提高,所研究的钾掺杂ZnS层的应变和位错密度均有所降低。通过记录波长范围为200–2500 nm的反射率和透射率光谱,估算了所研究的钾掺杂ZnS薄膜的线性光学参数。结果表明,随着样品中钾浓度的升高,钾掺杂ZnS层的折射率值得到提升。此外,能隙(Eg)计算表明,ZnS及钾掺杂ZnS薄膜具有直接光学跃迁特性,且随着钾浓度的增加,Eg值从3.64 eV降低至2.97 eV。基于Wemple和DiDomenico模型的研究显示,随着钾浓度的升高,所研究的钾掺杂ZnS层的色散能和振子强度增强,而振子能量则下降。光电参数分析表明,随着钾浓度的增大,等离子体频率、光学迁移率、光学载流子浓度、电导率以及光学介电常数均得到提升。同时,钾含量的增加也增强了ZnS及钾掺杂ZnS薄膜的非线性吸收系数和非线性折射率。通过热探针测试确定这些样品为n型半导体。研究结果表明,这些样品有望作为新型窗口层材料应用于太阳能电池中。

English Abstract

Zinc sulfide (ZnS) is an important n-type semiconductor exhibiting remarkable electrical and optical properties. The present study used the nebulizer spray pyrolysis technique to produce undoped and potassium-doped ZnS thin films using an economical spray pyrolysis method at different potassium concentrations (2.5, 5, and 7.5 wt%). The XRD results indicate a hexagonal structure for ZnS and potassium-doped ZnS thin films. Examining the structural characteristics reveals that the crystallite size ( D ) of the ZnS and potassium-doped ZnS films was expanded as the potassium content was elevated from 2.5 to 7.5 wt%. The strain and dislocation density of the examined potassium-doped ZnS layers were diminished by augmenting the potassium concentration in the ZnS films. The linear optical parameters of the examined potassium-doped ZnS films were estimated by recording the reflectance and transmittance spectra in the wavelength 200–2500 nm. The refractive index values of the potassium-doped ZnS layers were enhanced by raising the potassium concentration in the studied samples. Moreover, the energy gap ( E g ) calculations refer to the ZnS and potassium-doped ZnS films having direct optical transition, and the E g values were reduced from 3.64 to 2.97 eV by the increase in the potassium concentration. The Wemple and DiDomenico model study shows that the dispersion energy and oscillator strength of the examined potassium-doped ZnS layers were boosted by raising the potassium concentration while the oscillator energy was dropped. The optoelectrical indices analysis displays the enhancement of the plasma frequency, optical mobility, optical carrier concentration, electrical conductivity, and optical dielectric constants while enlarging the potassium concentration. Meanwhile, the boost in potassium contents enhances the nonlinear absorption coefficient and nonlinear refractive index of the ZnS and potassium-doped ZnS films. The hot probe procedure refers to these samples as n-type semiconductors. The results indicated that these samples could be used as a new window layer for solar cells.
S

SunView 深度解读

该钾掺杂ZnS薄膜技术对阳光电源光伏逆变器产品具有重要应用价值。研究显示钾掺杂可将ZnS带隙从3.64eV降至2.97eV,提升光电转换效率,这为SG系列组串式逆变器的上游电池窗口层优化提供新方案。材料光学迁移率和载流子浓度的提升可改善弱光响应,配合MPPT算法优化发电量。该n型半导体薄膜的低成本喷雾热解制备工艺,可降低光伏组件成本,提升阳光电源1500V高压系统的整体经济性,为iSolarCloud平台的发电效率分析提供新的材料性能数据支撑。