← 返回
储能系统技术
★ 5.0
质量负载对可持续多孔碳电容性能的影响
Effect of mass loading on the capacitive performance of sustainable porous carbon
| 作者 | Devu Bindhu |
| 期刊 | Journal of Materials Science: Materials in Electronics |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 36.0 卷 |
| 技术分类 | 储能系统技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 多孔三维蜂窝状碳材料 生物基超级电容器 壳聚糖电解质 质量负载 电容性能 |
语言:
中文摘要
能源消耗的加速及其对人类生活的影响推动了多种高效且可持续能源存储器件的发展。生物来源材料因其可行、低成本和可持续性,成为制备能源存储器件特别是超级电容器的理想多功能材料。本文以椰子叶柄这一生物质材料为前驱体制备了一种多孔三维蜂窝状碳材料,并将其用于以壳聚糖为粘结剂的超级电容器电极制造。该材料具有高达1630.67 m²/g的比表面积,孔径分布在1.5 nm至5 nm之间,证实了其在能源存储应用中的适用性。电化学测试结果表明,在0.62 A/g的电流密度下,材料实现了199 F/g的最大比电容,并在经过10,000次循环后仍保持94%–95%的稳定循环寿命。优化后的电极质量负载表现出优异的电化学性能,凸显了源自椰子叶柄的碳材料作为环境友好且成本低廉的超级电容器候选材料的巨大潜力。这些发现表明,所开发的材料在未来兼顾性能与可持续性的能源存储系统中具有广阔的应用前景。
English Abstract
The accelerated energy consumption and its impacts on our lives have led to the development of various efficient and sustainable energy storage devices. The bioderived materials are viable, cost-effective, and sustainable and hence a versatile material in fabricating energy storage devices, especially for supercapacitors. Herein a porous 3D honeycomb-like carbon is derived from the biomaterial coconut rachis which was used for the fabrication of electrodes for a supercapacitor with chitosan as the binder. A high surface area of 1,630.67 m 2 /g and a pore size distribution ranging from 1.5 nm to 5 nm were observed, confirming the material’s suitability for energy storage applications. Electrochemical tests revealed a maximum specific capacitance of 199 F/g at a current density of 0.62 A/g, with stable cycle life retention of 94–95% after 10,000 cycles. The optimized mass loading of the electrodes demonstrated superior performance, highlighting the potential of coconut rachis-derived carbon as an environmentally friendly and cost-effective alternative for supercapacitor applications. These findings suggest that the developed material holds promise for future energy storage systems that prioritize both performance and sustainability.
S
SunView 深度解读
该生物质多孔碳超级电容器技术对阳光电源储能系统具有重要参考价值。其199 F/g比电容和94-95%循环寿命可为PowerTitan储能系统的功率缓冲单元提供辅助支撑,与ST系列PCS配合实现毫秒级功率响应。3D蜂窝结构的高比表面积特性可启发我们优化储能电芯的电极材料设计,提升PowerStack系统的功率密度。该研究的质量负载优化方法论对我们改进电池模组装配工艺、降低储能系统成本具有借鉴意义,符合可持续发展战略。