← 返回
储能系统技术 ★ 5.0

用于超级电容器应用的RuO2/活性炭复合电极材料的电化学研究

Electrochemical studies of RuO2/activated carbon composite electrode materials for supercapacitor applications

语言:

中文摘要

近年来,由于现代社会能源需求不断增长,电化学储能已成为突出的研究重点。除了电池之外,超级电容器(SCs)正日益被视为具有前景的可再生且可持续的储能装置。超级电容器的电化学性能在很大程度上取决于电极材料的选择、电解质的性质以及分析过程中所采用的工作电位窗口。基于碳的电极材料具有可调的电导率、高比表面积和快速的电子转移动力学特性,但其较低的比电容限制了其商业化进程。二氧化钌(RuO2)材料因其高的比电容值而被广泛认为是适用于超级电容器的理想材料,但其高昂的制备成本及团聚效应限制了其市场应用。因此,基于RuO2的复合材料被广泛研究,以期优化材料成本并协同提升其性能。在本研究中,采用印楝(Azadirachta indica)制备活性炭(AC),并通过绿色方法利用羽衣草(Anacyclus pyrethrum)作为还原剂和封端剂合成RuO2/AC复合材料。所制备的材料通过多种原位和非原位技术进行了表征。原位电化学表征结果表明,该材料在2 mV/s扫描速率下比电容达到502 F/g,在1 A/g电流密度下的循环稳定性测试中表现出98%的电容保持率。所得结果证实了该复合材料在超级电容器应用中的适用性。

English Abstract

Electrochemical energy storage has emerged as a prominent research focus in recent years, owing to the escalating energy demands of contemporary society. Beside batteries, supercapacitors (SCs) are increasingly recognized as promising renewable and sustainable energy storage devices. The electrochemical performance of SCs is hugely dictated by the choice of the electrode material, the nature of the electrolyte, and the operational potential windows employed during analysis. Carbon-based electrode materials have tunable electrical conductivity, high surface area and fast electron transfer kinetics, but their low specific capacitance hinders commercialization. Ruthenium Oxide (RuO 2 ) materials are substantially recognized as suitable material for SC application due to its high specific capacitance value, but high fabrication cost and effect of agglomeration inhibit its market usage. Thus, RuO 2 -based composite materials are widely considered, to optimize the materials cost as well as to improve the performance synergistically. Here in this work, activated carbon (AC) was derived from Azadirachta indica and RuO 2 /AC composite was synthesized using Anacyclus pyrethrum as a reducing and capping agent via green method. The synthesized materials were characterized using various in situ and ex situ techniques. The in situ electrochemical characterization reveals the specific capacitance of 502 F/g at 2 mV/s and 98% capacitance retention from cyclic stability test at 1A/g. The obtained result supports the suitability of composite material toward supercapacitor applications.
S

SunView 深度解读

该RuO2/活性炭复合电极材料研究对阳光电源储能系统具有重要参考价值。其502 F/g比电容和98%循环稳定性可启发ST系列PCS的超级电容模块优化,用于功率缓冲和频繁充放电场景。复合材料降本思路契合PowerTitan储能系统的成本控制需求。绿色合成工艺与快速充放电特性可应用于充电站的峰值功率支撑单元,提升EV充电桩的动态响应能力。该技术为混合储能系统中超级电容与电池协同控制提供材料层面创新方向。