← 返回
光伏发电技术 ★ 5.0

CuCo2O4在储能、光电催化、太阳能电池和传感器应用中的挑战、前景及表面化学

Challenges, prospects, and surface chemistry of CuCo2O4 in energy storage, electro-photocatalysis, solar cells, and sensor applications

作者 Copper Cobalt Oxide (CuCo2O4)
期刊 Journal of Materials Science: Materials in Electronics
出版日期 2025年1月
卷/期 第 36.0 卷
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 铜钴氧化物 尖晶石型 导电性 储能性能 表面化学
语言:

中文摘要

铜钴氧化物(CuCo2O4)作为一种尖晶石型金属氧化物材料,因其在能量存储、光催化、电化学传感器、太阳能电池以及生物医学领域的应用而受到广泛关注。然而,其全面潜力的发挥仍受到诸多因素的限制,包括导电性差、储存容量有限、结构无序、转化反应过程中的微观结构变化、光催化效率低以及电化学灵敏度不足等问题。此外,现有的制备技术尚无法合成具有复杂微观结构的CuCo2O4(CCO),从而进一步提升其性能并拓展其应用范围。在本综述中,我们讨论了多种用于构建不同CCO微观结构的合成技术,并从有害物质使用、耗时、性能表现以及所需先进设备等方面对这些方法进行了比较。我们还重点阐述了不同微观结构对超级电容器和电池中的电荷存储容量、电催化与光催化性能、析氧和析氢反应、电化学传感以及太阳能电池效率的影响。此外,本文探讨了多个化学力学模型和基于密度泛函理论(DFT)的研究,以分析CCO中的电荷转移机制、循环过程中的副反应、协同效应、反应机理洞察与界面反应,以及氧空位的形成机制。最后,我们提出了多种策略与建议,以充分挖掘CCO在上述应用领域中的潜在价值。

English Abstract

Copper Cobalt Oxide (CuCo 2 O 4 ), a spinel metal oxide material, has attracted significant interest for its applications in energy storage, photocatalysis, electrochemical sensors, solar cells, and biomedical applications. However, its full potential is hindered by several issues such as poor conductivity, limited storage capacity, structural disordering, microstructural changes during conversion reactions, low photocatalytic efficiency, and electrochemical sensitivity. In addition, the current fabrication techniques are unable to synthesize complex microstructures of CCO to further enhance the performance and broaden the applications. In this review article, we discuss various synthesis techniques for fabricating different microstructures of CCO, comparing these methods in terms of hazardous material use, time consumption, performance, and the advanced equipment required. We also highlight the impact of different microstructures on charge storage capacity in supercapacitors and batteries, electro and photocatalysis, oxygen and hydrogen evolution reactions, electrochemical sensing, and solar cell efficiency. Additionally, we explore several chemomechanical models and DFT studies to analyze charge-transfer mechanisms, side reactions during cycling, synergistic effects, mechanistic insights and interface reactions, and formation of oxygen vacancies in CCO. Finally, we propose various strategies and recommendations to fully harness the potential of CCO in the aforementioned applications.
S

SunView 深度解读

CuCo2O4尖晶石材料在储能、光催化及传感领域的研究对阳光电源具有重要参考价值。其在超级电容器和电池中的电荷存储特性可为ST系列储能系统的电极材料优化提供思路,提升PowerTitan产品的能量密度和循环寿命。材料的光催化和氧析出反应特性可启发光伏制氢一体化方案开发。此外,其电化学传感性能可应用于iSolarCloud平台的电池健康状态监测,实现预测性维护。建议关注其微结构调控技术和界面反应机理,为功率器件散热材料和电极涂层创新提供理论支撑。