← 返回
储能系统技术
★ 5.0
晶粒尺寸对无铅0.4(Na0.5Bi0.5TiO3)–0.225BaTiO3–0.375BiFeO3伪三元陶瓷的结构、介电、铁电、压电及储能性能的影响
The effect of grain size on the structural, dielectric, ferroelectric, piezoelectric and energy storage properties of lead-free 0.4(Na0.5Bi0.5TiO3)–0.225BaTiO3–0.375BiFeO3 pseudo-ternary ceramics
| 作者 | Durga Prasad Nayak · Rinku Dhurua · Ranabrata Mazumder |
| 期刊 | Journal of Materials Science: Materials in Electronics |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 36.0 卷 |
| 技术分类 | 储能系统技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 无铅铁电材料 晶粒尺寸 储能性能 介电性能 铁电响应 |
语言:
中文摘要
由于在传感器、执行器、换能器和储能器件中的潜在应用,无铅铁电材料正受到广泛的研究关注。无铅铁电陶瓷的电学和结构性能显著受晶粒尺寸的影响,从而进一步影响其储能性能。本研究系统地探讨了特定无铅伪三元铁电体系0.4(Na0.5Bi0.5TiO3)–0.225BaTiO3–0.375BiFeO3的储能能力对晶粒尺寸的依赖性。通过传统的固相合成法制备了具有不同晶粒尺寸的样品,并通过调控烧结条件实现晶粒尺寸的控制。本文严格考察了晶粒尺寸与介电常数、铁电极化、击穿强度和能量密度等关键参数之间的关系。X射线衍射(XRD)分析证实了样品的相纯度,并揭示了晶粒尺寸变化引起的细微结构演化。扫描电子显微镜(SEM)显示样品具有均匀的微观结构,晶界清晰且孔隙率可忽略。压电响应在晶粒尺寸超过6 μm时出现突然增强。室温电阻率和介电击穿强度随着晶粒尺寸的增加呈现系统性下降趋势。介电性能测试表明,在整个晶粒尺寸范围内材料均表现出类弛豫特性,其中晶粒较粗的组分展现出更强的弛豫行为以及更高的“有序度”。通过极化-电场(P-E)铁电滞回线评估了储能密度。在优化的晶粒尺寸约6 μm时获得了最高的储能密度,约为1.5 J/cm³,这归因于饱和极化的增强和滞后损耗的降低。该高储能密度在从室温至175 °C的宽温度范围内得以保持。本文分析了这些因素之间的复杂相互关系,以优化材料在储能器件中的实际应用性能。研究结果为调控晶粒尺寸以最大化无铅铁电材料的储能性能提供了关键见解,推动了高性能无铅储能系统的开发进程。
English Abstract
Lead free ferroelectrics are under the research spotlight owing to their prospective application in sensors, actuators, transducers and energy storage devices. The electrical and structural properties of lead-free ferroelectric ceramics is significantly influenced by the grain size, thereby impacting the energy storage performance. This study investigates the dependence of energy storage capabilities on the grain size for a specific lead-free pseudo ternary ferroelectric system 0.4(Na 0.5 Bi 0.5 TiO 3 )–0.225BaTiO 3 –0.375BiFeO 3 . The specimens with varying grain sizes were fabricated through the conventional solid-state synthesis route, with grain size modulation achieved through controlled sintering conditions. The relationship between grain size and key parameters such as dielectric constant, ferroelectric polarization, breakdown strength, and energy density is rigorously examined. X-ray diffraction (XRD) analysis confirmed phase purity and revealed subtle structural evolution with grain size variation. Scanning electron microscopy (SEM) illustrated uniform microstructures with well-defined grain boundaries and negligible porosity. The piezo response shows a sudden enhancement when grain size increases beyond 6 μm. The room temperature resistivity and dielectric breakdown strength show a systematic decrease with increase in grain size. Dielectric measurements demonstrated a relaxor like characteristics across the grain size ranges with coarser grain sized composition showing a more relaxor nature and higher “degree of ordering”. The energy storage density was evaluated through polarization–electric field ( P – E ) ferroelectric hysteresis loops. The highest energy storage density ~ 1.5 J/cm 3 was obtained at an optimized grain size ~ 6 µm owing to enhanced saturation polarization and reduced hysteresis. The high energy storage density is retained over a wide temperature range from room temperature to 175 °C. The complex inter-relationship between these factors is analyzed to optimize the material's performance for practical applications in energy storage devices. The findings provide crucial insights into tailoring grain size for maximizing energy storage performance in lead-free ferroelectrics, paving the way for the development of high-performance lead-free energy storage systems.
S
SunView 深度解读
该无铅铁电陶瓷材料研究对阳光电源储能系统具有重要参考价值。研究揭示的晶粒尺寸优化(~6μm)实现1.5 J/cm³储能密度及宽温域稳定性(-25至175°C),可启发ST系列PCS中直流支撑电容器的材料选型优化。其高击穿强度与低介电损耗特性适用于PowerTitan储能系统的功率模块无源器件改进,提升系统功率密度。材料的弛豫铁电特性可为GaN/SiC功率器件的栅极驱动电路提供高频低损耗电容解决方案,助力三电平拓扑效率提升。该技术路线为开发环保型高性能储能介质材料提供了理论依据。