← 返回
| 作者 | Springer Nature remains neutral with regard to jurisdictional claims in published maps · institutional affiliations. |
| 期刊 | Journal of Materials Science: Materials in Electronics |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 36.0 卷 |
| 技术分类 | 储能系统技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 超级电容器 磷掺杂 NiCo2O4 水热法 电化学性能 |
语言:
中文摘要
超级电容器作为下一代清洁能源存储的关键解决方案正在兴起,然而提高其电容仍然是一个主要挑战。本研究通过水热法使用不同溶剂——蒸馏水、乙醇以及水-乙醇混合液,合成了磷掺杂的NiCo2O4纳米颗粒。采用XRD、场发射扫描电子显微镜(FE-SEM)、能量色散X射线光谱(EDAX)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)和BET分析等综合表征技术,对样品的结构、形貌和表面特性进行了评估。值得注意的是,在乙醇中合成的样品表现出高达81.36 m²/g的比表面积。在2 M KOH电解液中采用三电极体系进行电化学性能测试表明,以乙醇为介质合成的磷掺杂NiCo2O4在1 A/g电流密度下实现了545.45 F/g的优异比电容。此外,该电极在经过5000次循环后仍保持了93.21%的电容,表现出优异的循环稳定性以及接近95%的高库仑效率。这些结果凸显了磷掺杂NiCo2O4作为先进超级电容器高性能电极材料的巨大应用潜力。
English Abstract
Supercapacitors are emerging as a key solution for next-generation clean energy storage, yet enhancing their capacitance remains a major challenge. In this study, phosphorus-doped NiCo 2 O 4 nanoparticles were synthesized via a hydrothermal method using different solvents—distilled water, ethanol, and a water–ethanol mixture. Comprehensive characterization techniques including XRD, FE-SEM, EDAX, XPS, TEM, and BET analysis were employed to evaluate the structural, morphological, and surface properties of the samples. Notably, the sample synthesized in ethanol exhibited a high surface area of 81.36 m 2 /g. Electrochemical evaluation using a three-electrode setup in 2 M KOH revealed that the ethanol-mediated phosphorus-doped NiCo 2 O 4 delivered a remarkable specific capacitance of 545.45 Fg −1 at 1 Ag −1 . Furthermore, the electrode retained 93.21% of its capacitance after 5,000 cycles, demonstrating excellent cycling stability with the excellent Coulombic efficiency (almost at 95%). These findings highlight the potential of phosphorus-doped NiCo 2 O 4 as a high-performance electrode material for advanced supercapacitor applications.
S
SunView 深度解读
该磷掺杂NiCo2O4超级电容器技术对阳光电源储能系统具有重要参考价值。其545.45 Fg⁻¹的比电容和93.21%的循环稳定性,可为ST系列PCS的直流侧储能单元提供快速功率响应方案,特别适用于PowerTitan系统的调频调峰场景。该材料的高倍率性能可优化充电桩产品的峰值功率缓冲设计,配合GFM控制策略提升电网适应性。溶剂调控的纳米材料合成方法为储能器件的电极材料优化提供了新思路,有助于提升ESS系统的功率密度和循环寿命。