← 返回
光伏发电技术
★ 5.0
利用TiO2纳米颗粒进行界面调控以增强基于P3HT的聚合物太阳能电池的介电和电荷传输性能
Interface modulation of P3HT-based polymer solar cells using TiO2 nanoparticles for enhanced dielectric and charge transport properties
| 作者 | Hasan B. Albargi · Elkenany Brens Elkenany |
| 期刊 | Journal of Materials Science: Materials in Electronics |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 36.0 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | TiO2纳米粒子 P3HT 光伏性能 介电性能 电荷传输 |
语言:
中文摘要
本研究探讨了在基于聚(3-己基噻吩)(P3HT)的多层聚合物太阳能电池(PSCs)中引入TiO2纳米粒子对光伏、介电及结构性能的影响。将不同浓度(0.0–10 wt%)的TiO2纳米粒子(<25 nm)掺入P3HT中,并用作界面修饰层和空穴传输层(HTLs)。优化后的TiO2掺杂量可改善P3HT基体中的分子链间π–π堆叠和结晶性,从而增强电荷离域化和导电性,这一结论通过透射电子显微镜(TEM)、X射线衍射(XRD)、紫外-可见(UV–Vis)光谱以及宽频介电谱分析得到证实。介电分析表明,由于界面极化效应以及纳米尺度电容域的形成,材料的介电常数和电容显著提高。阻抗谱和交流电导率研究表明,TiO2掺杂增强了局域跳跃输运并减少了电阻损耗。直流电导率(σdc)从2.02 × 10–4提升至7.69 × 10–4 S cm−1。在PSC器件中使用掺杂TiO2的HTLs后,实现了4.13%的功率转换效率(PCE),相较于未掺杂器件的3.49%效率,短路电流密度(Jsc)提高了17.45%。该研究揭示了活性层/HTL界面处空穴提取能力与能级排列的改善;然而,过高的TiO2掺杂量会导致结构无序并引起器件性能下降。因此,本工作提出了一种用于优化聚合物光伏器件界面介电特性和电荷转移过程的界面工程方法。
English Abstract
In this study, we present the effects of TiO 2 nanoparticle incorporation on the photovoltaic, dielectric, and structural properties of multilayer polymer solar cells (PSCs) based on poly(3-hexylthiophene) (P3HT). P3HT was merged with TiO 2 nanoparticles (< 25 nm) at various concentrations (0.0–10 wt%) and used as both interfacial modifiers and hole transport layers (HTLs). The optimized TiO 2 loading within the P3HT matrix improves interchain π–π stacking and crystallinity, resulting in enhanced charge delocalization and conductivity, as revealed by transmission electron microscope (TEM), x-ray diffraction (XRD), ultraviolet–visible (UV–Vis) spectroscopy, and broadband dielectric spectroscopy. Dielectric analyses reveal significant increases in permittivity and capacitance due to interfacial polarization and the formation of nanoscale capacitive domains. Impedance spectroscopy and AC conductivity studies reveal that TiO 2 doping enhances localized hopping transport and minimizes resistive losses. The direct current (DC) conductivity (σ dc ) increases from 2.02 × 10 –4 to 7.69 × 10 –4 S cm −1 . TiO 2 -doped HTLs in PSC devices achieve a power conversion efficiency (PCE) of 4.13% (17.45% increase in short-circuit current density (J sc )), surpassing the pristine device efficiency of 3.49%. The study reveals improvements in hole extraction and energy state alignment at the active layer/HTL interface, however, higher TiO 2 loading can cause structural disorder and performance decrease, suggesting a polymer photovoltaics interface engineering method for optimizing dielectric characteristics and charge transfer.
S
SunView 深度解读
该P3HT/TiO2界面调控技术对阳光电源光伏逆变器及储能系统具有重要参考价值。研究揭示的纳米颗粒掺杂提升介电常数、优化载流子传输机制,可启发SG系列逆变器中功率器件的界面工程优化。DC电导率提升3.8倍及PCE增至4.13%的成果,为PowerTitan储能系统的电极材料改进、降低接触电阻提供思路。界面极化增强电容特性的发现,可应用于ST系列PCS的薄膜电容设计。该纳米复合策略对提升SiC/GaN器件界面稳定性、优化三电平拓扑中的电荷传输效率具有借鉴意义,助力系统效率提升与成本优化。