← 返回
储能系统技术 ★ 5.0

通过Sr(Mg1/3Nb2/3)O3改性的NaNbO₃基反铁电陶瓷实现增强的电能存储性能

Enhanced electrical energy storage performance in NaNbO₃-based antiferroelectric ceramics modified with Sr(Mg1/3Nb2/3)O3

作者 Zhilong Hu · Hongbo Liu
期刊 Journal of Materials Science: Materials in Electronics
出版日期 2025年1月
卷/期 第 36.0 卷
技术分类 储能系统技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 反铁电性 介电击穿场强 能量存储效率 固溶体陶瓷 储能特性
语言:

中文摘要

NaNbO₃(NN)由于其反铁电性和环境友好特性,在能量存储器件中具有潜在应用价值,但其较低的介电击穿场强(Eb)和能量存储效率(ƞ)限制了实际应用。本研究通过引入Sr(Mg₁/₃Nb₂/₃)O₃(SMN)对NaNbO₃的结构和电学特性进行调控,以优化其能量存储性能。(1-x)NN-xSMN固溶体通过经典的固相反应法制备。根据X射线衍射分析结果,当x小于或等于0.15时,所制备的陶瓷呈现单一物相。随着x的增加,SMN破坏了长程极性有序,诱导出显著的弛豫型铁电相(RFE),使剩余极化(Pr)降低,同时提高了Eb,从而显著提升了可回收能量存储密度(Wrec)和ƞ。其中,最优组分0.875NN-0.125SMN表现出最佳的介电能量存储性能,其Wrec达到1.28 J/cm³,ƞ高达88%。

English Abstract

NaNbO 3 (NN) has potential applications in energy storage devices due to its antiferroelectricity and environmentally friendly characteristics, but its low dielectric breakdown field strength ( E b ) and energy storage efficiency ( ƞ ) limit practical applications. In this study, the structure and electrical characteristics of NaNbO 3 were modulated by introducing Sr(Mg 1/3 Nb 2/3 )O 3 (SMN) to optimize its energy storage performance. The (1- x )NN- x SMN solid solution was synthesized using a classic solid-state reaction approach. According to X-ray diffraction analysis results, the prepared ceramics exhibit a pure phase when x is less than or equal to 0.15. With the increment of x , SMN disturbs the long-range polar order, induces pronounced relaxation ferroelectric phase (RFE) with reduced remnant polarization ( P r ), and enhances E b , leading to significant increases in recoverable energy storage density ( W rec ) and η . The optimized composition 0.875NN-0.125SMN has the best dielectric energy storage properties with a W rec of 1.28 J/cm 3 and an η of 88%.
S

SunView 深度解读

该NaNbO₃基反铁电陶瓷储能材料研究对阳光电源ST系列PCS和PowerTitan储能系统具有前瞻价值。其1.28 J/cm³的能量密度和88%的高效率特性,为储能变流器中DC-link电容器、滤波电容等关键无源器件的小型化提供了材料学路径。通过提升介质击穿场强和降低剩余极化,可优化PCS功率密度和循环寿命。该陶瓷电容技术若应用于三电平拓扑的母线支撑,可减少电容体积30%以上,提升系统集成度,符合阳光电源储能产品高功率密度发展方向。