← 返回
光伏发电技术
★ 5.0
一种可在任意环境条件下模拟光伏太阳能电池板24小时温度的模型
A model for h24 simulation of photovoltaic solar panels temperatures at any environmental condition
| 作者 | Angelo Spena · Francesco Biso · Luca Rosat |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 287 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A novel steady-state thermal model for PV panels simulation is proposed. |
语言:
中文摘要
本文提出了一种可用于预测光伏太阳能电池板(PV)温度的模型,该模型通过对其全天24小时热行为的模拟实现温度预测。为了研究光伏组件与其周围环境之间的连续相互作用,本分析不仅限于现有模型通常关注的发电时段(白天),而是扩展至广泛气候条件下各种运行工况的全面分析。为估算电池结温、前表面和背表面温度,本文还提出了一种关于光伏面板与周围环境之间对流换热关系的原创性重构方法。为验证模型性能,采用了罗马大学“托尔维加塔”分校实验站的数据集,涵盖一个商用光伏组件连续14个月、时间步长为1分钟的运行数据。通过对单日及整体数据的对比评估,结果表明该模型相较于现有文献中的模型具有更高的精度(均方根误差RMSE约为1.5°C,平均绝对误差MAE为1°C)。基于包含510,701个观测值的大规模数据集,本文还能够详细揭示并讨论由降雨、湿气影响以及风力引发局部湍流时对流过程复杂性所导致的偶发性关键问题。研究结果表明,该模型仅需少量气象输入参数,且具备足够的可靠性与鲁棒性,可有效满足其设计应用目标。
English Abstract
Abstract The paper proposes a model enabling the prediction of the temperatures of photovoltaic solar panels PV by means of the simulation of their thermal behaviour extended to the entire 24 h of a day. To study the continuous interaction between a PV module and its surrounding environment, the analysis was therefore not limited to the daytime of power generation as done by current models, but was extended to any operating setting under widely varying climatic conditions. To estimate the junction, frontsheet and backsheet temperatures, an original reformulation of the relationships for the convective heat exchange between a PV panel and the surroundings is also proposed. To assess the model, a dataset from the experimental station of the University of Rome’ Tor Vergata’ was used, extended up to 14 months of continuous operation of a commercial PV module with a time step of 1 min. The model’s adherence to the available data was assessed both on single days, and globally, demonstrating a higher accuracy (with approximately RMSE 1.5 °C and MAE 1 °C) than models available in the literature. The possibility of working on a net size of 510,701 observations also made it possible to highlight and discuss in detail incidental criticalities resulting from the effect of rain, of moisture, and from the complexity of convection when local turbulences are generated by the wind. The results show the proposed model, requiring very few weather input parameters, reliable and robust enough to fulfill the intended purposes.
S
SunView 深度解读
该24小时光伏组件温度预测模型对阳光电源SG系列逆变器和iSolarCloud平台具有重要应用价值。精确的温度建模(RMSE 1.5°C)可优化MPPT算法的温度补偿策略,提升发电效率。全天候热行为仿真能增强预测性维护功能,识别湿度、降雨等环境因素导致的异常工况。该模型可集成至智能运维系统,实现组件寿命预测和故障预警,并为1500V高压系统的热管理设计提供理论支撑,降低温度应力对功率器件的影响。