← 返回
光伏发电技术
★ 5.0
基于光伏系统电流时频特性的电弧故障定位
Arc fault localization based on time-frequency characteristics of currents in photovoltaic systems
| 作者 | Yu Meng · Haowen Yang · Silei Chen · Qi Yang · Runkun Yu · Xingwen Li |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 287 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | The [arc fault](https://www.sciencedirect.com/topics/engineering/arc-fault "Learn more about arc fault from ScienceDirect's AI-generated Topic Pages") detection features become weaker as the cable length increases. |
语言:
中文摘要
摘要 随着直流(DC)配电系统的发展,线路长度不断增加,使得维护更加困难,电弧故障定位成为一个亟待解决的问题。本文提出了一种适用于不同负载和电流水平光伏系统中的电弧故障定位算法。首先,基于仿射时频分析方法,所提出的电弧故障检测特征能够准确识别电弧故障状态与正常状态。研究了线路阻抗对电弧故障检测特征的干扰,并利用该干扰构建电弧故障定位特征。同时,由于电弧故障具有随机性,电弧故障定位特征在有效使用前需要进行平滑和归一化处理。然后,采用基于自适应网络的模糊推理系统(ANFIS)模型来预测电弧故障位置。时间序列生成对抗网络方法用于实现数据增强,提高模型精度。最后,将所提算法部署于树莓派4b上,并在电弧故障实验平台上进行在线测试。当线路长度为0–80 m时,电弧故障检测准确率达到100%,定位误差不超过4.03%。整个检测与定位时间小于1秒,满足UL1699B标准。
English Abstract
Abstract With the development of direct current (DC) distribution systems, the increasing line length makes the maintenance more difficult and the arc fault localization becomes an urgent issue. In this paper, an arc fault localization algorithm is proposed in photovoltaic systems with different loads and current levels. Firstly, based on the affine time–frequency analysis method, the proposed arc fault detection feature can accurately identify arc faults and normal states. The interference of the line impedance on arc fault detection features is studied and used to construct the arc fault localization feature. Meanwhile, due to the randomness of the arc fault, the arc fault localization feature needs to be smoothed and normalized before it can be effectively used. Then, the adaptive-network-based fuzzy inference systems (ANFIS) model is applied to predict arc fault position. The time-series generative adversarial networks method helps achieve data augmentation and improve the model accuracy. Finally, the proposed algorithm is applied on the Raspberry Pi 4b and tested online on the arc fault experimental platform. The arc fault detection accuracy reaches 100 % and the localization error is not more than 4.03 % under the condition of 0–80 m line length. The entire detection and localization time is less than 1 s, which meets the UL1699B standard.
S
SunView 深度解读
该电弧故障定位技术对阳光电源SG系列光伏逆变器及ST储能系统具有重要应用价值。基于时频特征的检测算法可集成至iSolarCloud智能运维平台,实现直流侧故障精准定位,检测精度达100%且响应时间<1s,满足UL1699B标准。该技术可优化现有MPPT控制策略的安全防护层级,特别适用于1500V高压系统长线路场景。结合ANFIS模型的自适应学习能力,可提升阳光电源逆变器的智能诊断功能,降低光伏电站运维成本,增强系统安全性。建议在SG350HX等大功率机型及PowerTitan储能系统中优先部署该算法。