← 返回
光伏发电技术
★ 4.0
基于解析模型的太阳能塔式系统实时高精度辐射通量分布仿真
Real-time and high-accuracy radiative flux distribution simulation based on analytical model for solar power tower system
| 作者 | Xiaoxia Lina1 · Xinlan Zhaoa1 · Zengqiang Liu · Wenjun Huang · Yuhong Zhao · Jieqing Feng |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 287 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | A novel real-time radiative [flux density](https://www.sciencedirect.com/topics/physics-and-astronomy/flux-density "Learn more about flux density from ScienceDirect's AI-generated Topic Pages") simulation method Fast-NEG is proposed. |
语言:
中文摘要
解析模型通常用于太阳能塔式系统在设计、优化和运行过程中接收器表面辐射通量密度分布(RFDD)的仿真。然而,现有的解析模型仿真方法通常按顺序累积各个定日镜的仿真结果,导致效率低下、计算成本高昂,从而丧失了解析模型本应具备的效率优势,尤其是在大规模定日镜场的情况下更为显著。本文提出了一种基于解析模型的大规模定日镜场实时且精确的RFDD仿真新方法,即快速-NEG(Neural Elliptical Gaussian,神经椭圆高斯)方法。该仿真方法将传统的缓慢串行累积过程重构为在图形处理单元(GPU)上的高度并行化计算,其中每个线程负责计算从接收器像素到可见定日镜的辐射通量密度映射。这种高效的并行仿真过程适用于所有高斯或椭圆高斯类解析模型。本文采用精确的NEG模型,并通过张量积分解与预计算技术对其进行加速,以描述单个定日镜的RFDD。在包含6282个定日镜的大规模定日镜场上,将Fast-NEG仿真方法与当前最先进的准蒙特卡洛光线追踪(QMCRT)方法在一年中不同时刻进行了对比,结果表明仿真速度提高了两个数量级,总能量、峰值以及均方根误差(RMSE)的平均相对误差分别为0.40%、0.25%和0.0068%。与目前广泛使用的解析模型仿真方法相比,Fast-NEG方法在显著提升仿真精度的同时,将计算效率提高了1至7个数量级。
English Abstract
Abstract Analytical models are commonly used for simulating radiative flux density distributions (RFDD) on the receiver in the design, optimization and operation of solar power tower systems. However, existing analytical model simulation methods typically accumulate the simulation results of individual heliostats sequentially, leading to inefficiencies, high computational costs and loss of the efficiency advantage of the analytical model, especially for large-scale heliostat fields. In this paper, a novel real-time and accurate RFDD simulation method for large-scale fields based on an analytical model is proposed, namely fast-NEG (Neural Elliptical Gaussian). The proposed simulation method re-frames the slow sequential accumulation process into highly parallelized computation on a graphics processing unit (GPU), where each thread computes the radiative flux density mapping from a receiver pixel to a visible heliostat. The efficient parallel simulation process is applicable to all Gaussian or elliptical Gaussian analytical models. The accurate NEG model is adopted and accelerated by tensor product decomposition and precomputation to describe the RFDD of the individual heliostat. The Fast-NEG simulation is compared with the state-of-the-art method Quasi-Monte Carlo Ray Tracing (QMCRT) on a large-scale field with 6282 heliostats at different times of one year, resulting in simulation speed improvement by two orders of magnitude, and a mean relative error of total energy, peak value and Root Mean Square Error (RMSE) are 0.40%, 0.25% and 0.0068%, respectively. Compared with the prevalent analytical model simulations, the Fast-NEG approach significantly enhances the simulation accuracy and boosts the efficiency by 1-7 orders of magnitude.
S
SunView 深度解读
该光热电站辐射通量实时仿真技术对阳光电源拓展光热储能一体化系统具有重要参考价值。Fast-NEG模型通过GPU并行计算实现两个数量级的速度提升,可借鉴应用于iSolarCloud平台的大规模光伏阵列实时功率预测与优化调度。其高精度辐射分布建模思路可启发SG逆变器的MPPT算法优化,特别是复杂遮挡场景下的组串级功率预测。该方法的张量分解与预计算技术对ST储能系统的多时间尺度能量管理策略优化也有借鉴意义,可提升大型储能电站的实时调度响应速度。