← 返回
光伏发电技术
★ 5.0
WRF Chem在阿联酋对集中式太阳能应用的业务化预报评估及其对气溶胶显式动力学的敏感性
Evaluation of WRF Chem operational forecast over UAE for concentrated solar energy applications and sensitivity to explicit dynamics of aerosols
| 作者 | Vineeth Krishnan Valappi · Luis Martin Pomare · Michael Westo |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 288 卷 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Solar irradiance forecasting. |
语言:
中文摘要
摘要 本研究利用天气研究与预报(WRF)模型及其耦合气象-化学模型WRF Chem,模拟阿拉伯联合酋长国(UAE)地区的直接法向辐射(DNI)。研究旨在评估风成和人为气溶胶对DNI预报的影响,并在干旱地区比较WRF与WRF Chem模型的表现。目前,WRF-Chem模型已用于光伏屋顶系统的业务化预报。模拟涵盖2022年每个季节的一个月,代表了阿联酋不同的气象与气候状态。WRF Chem模型的模拟设置包括覆盖阿拉伯半岛的三个嵌套区域,重点聚焦于阿联酋地区。模型性能评估采用了迪拜水电局(DEWA)地面辐射观测站提供的逐小时质量控制后的DNI测量数据。结果表明,在WRF Chem中对气溶胶进行显式建模显著提高了逐小时DNI预报的准确性。引入气溶胶排放与化学过程后,在所有时间预报范围和各个季节中,归一化平均偏差(NMB)和相对均方根偏差(rRMSD)均得到显著改善。值得注意的是,与WRF参考模型相比,WRF Chem中纳入气溶胶过程使rRMSD改善了33.33%,尤其在7月(夏季)和10月(秋季)的第2天和第3天预报时效中,改进幅度超过60%。研究结论指出,在气溶胶浓度较高的干旱地区,数值模拟与建模中对气溶胶过程的显式处理可显著提升预报精度,为集中式太阳能电站的业务化运行优化提供了重要科学依据。
English Abstract
Abstract In this study, the Weather Research and Forecasting (WRF) model, along with its coupled meteorology-chemistry model WRF Chem, is utilized to simulate Direct Normal Irradiance (DNI) over the United Arab Emirates (UAE). The research aims to evaluate the impact of Aeolian and anthropogenic aerosols on DNI forecasts, comparing the WRF and WRF Chem models in an arid region. The WRF-Chem model is currently being used operationally for photovoltaic rooftop systems. The simulation covers one month for each season of the year in 2022, representing distinct meteorological and climate regimes in the UAE. WRF Chem model simulations are configured with three nested domains over the Arabian Peninsula, focusing on the UAE. Hourly quality-checked pyrheliometric DNI measurements from DEWA’s ground radiometric station are used for model performance evaluation. Results show that explicit modeling of aerosols in WRF Chem significantly enhances forecast accuracy for hourly DNI. The inclusion of aerosol emissions and chemistry leads to substantial improvements in normalized Mean Bias (NMB) and relative Root Mean Square Deviation (rRMSD) for all temporal forecast horizons and seasons. Notably, the incorporation of aerosol processes in WRF Chem improves rRMSD by 33.33% compared to the WRF reference model, with particularly high improvements (over 60%) in forecast horizons day 2 and day 3 for July (summer) and October (fall). The study concludes that explicit treatment of aerosol processes in numerical simulation and modeling significantly enhances forecast accuracy in aerosol-laden arid regions, providing valuable insights for the operational optimization of concentrated solar power plants.
S
SunView 深度解读
该研究对阳光电源SG系列光伏逆变器及iSolarCloud平台具有重要应用价值。WRF-Chem模型通过显式建模气溶胶动力学,将DNI预测精度提升33%,在沙尘高发的2-3天预报中改善超60%。这为阳光电源在中东等干旱地区的光伏电站提供了精准功率预测依据,可集成至iSolarCloud智能运维平台,优化MPPT算法响应策略,提升发电量预测准确性,并为储能系统ST系列PCS的充放电调度提供气象-辐照耦合数据支持,显著增强新能源电站在高气溶胶环境下的运营效率。