← 返回
储能系统技术 ★ 5.0

用于带热能存储的聚光太阳能发电的流化床颗粒接收器的降阶建模

Reduced order modeling of a fluidized bed particle receiver for concentrating solar power with thermal energy storage

作者 Keaton J.Brewster · Janna Martinek · Federico Municchia1 · Winfred J.Arthur-Arhin · Jesse R.Fosheim · Zhiwen Ma · Gregory S. Jackson
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 289 卷
技术分类 储能系统技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Bubbling fluidization allows absorbed wall fluxes in indirect receivers > 200 kW m−2.
语言:

中文摘要

摘要 氧化物颗粒可作为下一代聚光太阳能发电(CSP)电站中的传热和热能存储(TES)介质,其中高温热能存储能够支持高效动力循环在600°C以上温度下实现可调度的电力输出。在兆瓦级中央塔式接收器中,将热量传递给高温流动颗粒仍然是CSP领域面临的一项挑战。对于采用外部壁面来容纳颗粒的间接式接收器,要使壁面温度保持在结构金属合金耐温极限以下,就需要在壁面与运动颗粒流之间实现高的传热系数。向下流动颗粒的鼓泡流化状态可以维持较高的床-壁传热系数(>1000 W m⁻² K⁻¹)。本研究基于实验校准的床-壁传热和垂直颗粒扩散关联式,建立了一种轴向离散化的分区模型,用于模拟逆流式流化床接收器,以探讨鼓泡流化如何助力实现间接腔体颗粒接收器。高床-壁传热系数可在峰值入口辐射通量为980 kW m⁻²时,支持倾斜腔壁上的太阳辐射通量超过200 kW m⁻²,同时保持外部壁面温度低于950°C。横向颗粒扩散使得靠近接收器前缘的较热颗粒与远离前缘的较冷颗粒发生混合,从而降低最大外部壁面温度。参数化研究分析了质量通量、颗粒扩散和太阳聚光比对CSP电站间接接收器热效率和温度均匀性的影响。这些研究结果为设计能够维持颗粒出口温度高于750°C的间接式流化床腔体接收器提供了理论基础。

English Abstract

Abstract Oxide particles can serve as both the heat transfer and thermal energy storage (TES) media for next-generation concentrating solar power (CSP) plants where high-temperature TES enables dispatchable electricity from efficient power cycles with firing temperatures above 600 ° C . Transferring heat to flowing particles at such high temperatures in a MW-scale central tower receiver remains a challenge for the CSP community. For indirect receivers with external walls to contain the particles, maintaining wall temperatures below the limits of structural metal alloys requires high heat transfer coefficients between the wall and the moving particle stream. Bubbling fluidization of downward-flowing particles can sustain high bed-wall heat transfer coefficients ( > 1000 W m −2 K −1 ). Using experimentally calibrated correlations for bed-wall heat transfer and vertical particle dispersion, this study implements an axially discretized zonal model of a counterflow fluidized bed receiver to explore how bubbling fluidization may enable indirect cavity particle receivers. High bed-wall heat transfer coefficients support solar fluxes on angled cavity walls > 200 kW m −2 at peak aperture fluxes of 980 kW m −2 while maintaining external wall temperatures < 950 ° C . Lateral particle dispersion enables hotter particles near the receiver leading edge to mix with cooler particles further from the leading edge to lower maximum external wall temperatures. Parametric studies identify how mass fluxes, particle dispersion, and solar concentrations impact indirect receiver thermal efficiency and uniformity for a CSP plant. These studies provide a basis for the design of indirect fluidized-bed cavity receivers that can maintain particle outlet temperatures for TES above 750 ° C .
S

SunView 深度解读

该流化床颗粒储热技术为阳光电源ST系列储能系统提供长时储能方案启发。研究中750°C以上高温储热与高效换热技术(>1000 W/m²K)可与PowerTitan储能系统形成互补,拓展光热-光伏混合储能应用场景。间接腔体接收器的热流优化方法对PCS热管理设计具有参考价值,特别是高功率密度工况下的温度均匀性控制。该技术路线可助力阳光电源开发新型长时储能解决方案,提升可调度电力供应能力,符合大规模可再生能源并网需求。