← 返回
光伏发电技术 ★ 5.0

动态多样性捕获差分进化精确设计复杂非线性光伏系统:一种启发式案例

Dynamic diversity capture differential evolution to accurately design complex nonlinear photovoltaic system: A heuristic case

语言:

中文摘要

摘要 在可再生能源转型背景下,太阳能光伏(PV)技术的应用必须依赖高效且可靠的参数辨识方法,以确保系统的长期稳定运行。由于光伏模型具有高度非线性且参数难以准确估计,本文提出了一种改进的动态多样性捕获L-SHADE算法结合参数矩阵预分解的方法(DcL-SHADED),用于估计光伏模型中的未知参数。在DcL-SHADED中,首先通过分解方法将待估计的参数预先分解为具有不同属性的参数子集;其次,提出一种动态种群多样性捕获机制,用以判断不同代际种群多样性的变化趋势;进一步地,设计了一种最优个体引导的进化策略,以增强个体的局部开发能力。因此,个体能够根据种群多样性变化趋势自适应地选择两种适当的进化策略之一。最后,DcL-SHADED先对具有非线性特性的参数进行进一步识别,再构建矩阵方程重新评估线性未知参数。通过对七个不同程度非线性的光伏模型进行测试,结果表明DcL-SHADED优于多种已知的对比算法,验证了该算法具有较强的竞争力。

English Abstract

Abstract In the context of renewable energy transformation, the application of solar photovoltaic (PV) technology must rely on efficient and reliable parameter identification methods to ensure the long-term stable operation of the system. Due to PV models are highly nonlinear and it is difficult to estimate parameters, this paper proposes an improved dynamic diversity capture L-SHADE with parameters matrix pre-decomposition approach (DcL-SHADED) to estimate the unknown parameters of PV models. In DcL-SHADED, first, the parameters that need to be estimated are pre-decomposed into parameters of different properties by means of a decomposition method. Secondly, we propose a dynamic population diversity capture mechanism to determine the changing trend of population diversity of different generations. Furthermore, an optimal individual-guided evolution strategy is proposed to improve individual local development capabilities. Therefore, individuals are encouraged to adaptively choose one of two appropriate evolutionary strategies based on the changing trend of population diversity. Finally, DcL-SHADED further identifies parameters with nonlinear characteristics, followed by the construction of matrix equations to reassess the linear unknown parameters. By testing seven PV models with varying degrees of nonlinearity, it is evident that DcL-SHADED outperforms well-known comparative algorithms. This confirms the strong competitiveness of DcL-SHADED.
S

SunView 深度解读

该光伏参数辨识算法对阳光电源SG系列逆变器的MPPT优化具有重要应用价值。DcL-SHADED通过动态种群多样性捕获机制和参数矩阵预分解,可精确识别光伏系统非线性特性,有助于提升逆变器在复杂工况下的最大功率点跟踪精度。该方法可集成至iSolarCloud平台的预测性维护模块,实现光伏阵列参数在线辨识与性能诊断,优化1500V高压系统的控制策略,提高发电效率和系统可靠性,为智能运维提供算法支撑。