← 返回
储能系统技术 ★ 5.0

基于颗粒介质并与聚光太阳能发电集成的抽热式储能系统分析

Analysis of pumped thermal energy storage using particle media integrated with concentrating solar power

作者 Joshua Mc Tigu · Zhiwen Ma
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 292 卷
技术分类 储能系统技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Hybrid PTES-CSP can reduce costs and provide multiple value streams.
语言:

中文摘要

摘要 抽热式储能(Pumped Thermal Energy Storage, PTES)是一种电能存储系统,它将电能转换为热能进行储存,并在后续将其重新转化为电能。先前的研究表明,颗粒材料具有较低的初始投资成本,并可在较宽的温度范围内运行。采用颗粒储热的PTES系统相比使用熔盐储热的系统,能够实现更高的往返效率和比功率输出。本文探讨了将PTES与聚光太阳能发电(Concentrating Solar Power, CSP)相结合的混合系统。由于混合系统可共享大部分组件,因此相较于两个独立运行的装置,其成本更低。此外,混合系统还能提供多种服务(如可再生能源发电和电能存储服务)。在这些混合概念中使用颗粒储热技术,使得设计条件的选择更加灵活,因为允许在较宽的操作温度范围内运行,从而有可能识别出性能优良的混合系统设计方案。本文提出了两种PTES-CSP混合系统的构型,并建立了热力学模型,用于评估这两种混合系统的性能。这些模型考虑了涡轮机械效率、换热器中的端温差与压降,以及其他低效因素,如电机-发电机损耗和空气风机功耗的影响。“太阳能补热”构型利用CSP提高充电热泵所供给的温度。放电系统则采用顶置燃气循环与底置蒸汽循环相结合的方式,以充分释放可用能量。通过利用太阳能将最高温度从750 K提升至1100 K,系统的往返效率由41%提高到62%,比功输出则从88 kJ/kg增加至301 kJ/kg。第二种构型为“双模式”装置,该装置利用同一套组件同时实现电能存储和太阳能发电功能。PTES模式与CSP模式在不同的设计参数下各自达到最优性能,但通过精心选择系统参数,可使两种模式均表现出良好的性能:当颗粒接收器温度高于1200 K、热泵最高温度为1100 K时,某一设计方案可实现PTES往返效率超过60%,CSP热机效率超过40%,且两种循环的比功输出均大于150 kJ/kg。

English Abstract

Abstract Pumped Thermal Energy Storage (PTES) is an electricity storage system that converts electricity into thermal energy which is stored and later transformed back into electricity. Previous work has illustrated that particles have low capital costs and can be operated over a wide range of temperatures. PTES with particle storage achieves higher round-trip efficiency and specific power output than when molten salt thermal energy storage is used. This article explores hybrid systems that combine PTES with Concentrating Solar Power (CSP). Hybrid systems share the majority of components thereby reducing costs compared to two stand-alone devices. In addition, hybrid systems can provide multiple services (such as renewable power generation and electricity storage services). Using particle thermal storage in these hybrid concepts provides freedom in choosing the design conditions, since a wide range of operating temperatures is allowable, therefore making it possible to identify hybrid system designs that have good performance. In this article, two concepts for hybrid PTES-CSP are introduced. Thermodynamic models are developed and these are used to evaluate the performance of two hybrid systems. These models account for turbomachinery efficiency, and approach temperature and pressure loss in heat exchangers, as well as other sources of inefficiency, such as motor-generator losses, and air fan power. The “Solar Top-Up” Concept uses CSP to increase the temperature delivered by the charging heat pump. The discharging system uses a topping gas cycle and a bottoming steam cycle to fully exploit the available energy. Using solar heat to increase the maximum temperature from 750 K to 1100 K increases the round-trip efficiency from 41 % to 62 % and the specific work output from 88 kJ/kg to 301 kJ/kg. The second concept is a “Dual-Mode” device which provides both electricity storage and solar electricity generation with the same set of components. The PTES-mode and CSP-mode performance are optimized at different design values but careful parameter selection leads to good performance of both modes: one design produces PTES round-trip efficiency > 60 %, CSP heat engine efficiency > 40 %, and specific work outputs > 150 kJ/kg (for both cycles), when the particle receiver temperature is > 1200 K and maximum heat pump temperature is 1100 K.
S

SunView 深度解读

该PTES-CSP混合储能技术对阳光电源ST系列储能变流器和PowerTitan系统具有重要启示。颗粒介质储热可实现750-1200K宽温域运行,往返效率达62%,比熔盐方案更优。双模式概念与阳光电源光储一体化战略高度契合:同一套PCS可支持储能模式(>60%效率)和光伏发电模式(>40%热机效率)。建议在ST系列中探索高温储能拓扑优化,结合三电平技术提升宽温域功率转换效率,并通过iSolarCloud平台实现光储协同调度,为大规模可再生能源并网提供多元化解决方案。