← 返回
光伏发电技术 ★ 5.0

通过给体取代策略调控锌卟啉基空穴传输材料的光伏参数

Tuning the photovoltaic parameters of ZnII porphyrin-based hole-transport materials by donor substitution strategy

语言:

中文摘要

我们采用量子化学方法对具有前景的实验分子MDA4(以Zn II卟啉环为核心,二芳胺为给体)以及基于该分子通过给体基团取代设计的分子(命名为MDA4-Z1、MDA4-Z2和MDA4-Z3)进行了理论研究,研究内容包括几何结构、电子性质、激发态性质及空穴迁移率等。研究结果表明,所设计的分子均具有优异的光吸收性能,有利于提高分子的短路电流密度。这些分子还表现出良好的电荷转移性能。与实验分子MDA4相比,所设计分子的最大吸收峰波长均发生蓝移。分子MDA4-Z1和MDA4-Z3的溶解性与实验分子MDA4相近。所有设计分子的空穴迁移率相较于实验分子MDA4均有显著提升,其中MDA4-Z3的空穴迁移率最高。值得注意的是,MDA4-Z3在众多设计分子中表现出最优的综合性能,使其成为一种潜在的理想空穴传输材料。

English Abstract

Abstract We used quantum chemical methods to conduct theoretical studies on the promising experimental HTM molecule MDA4 (Zn II porphyrin ring as the core and diarylamine as the donor) and molecules designed based on this molecule by substitution with donor groups (named MDA4-Z1, MDA4-Z2, and MDA4-Z3), including geometric structure, electronic properties, excited state properties, and hole mobility, etc. The research results indicate that the designed molecules all have excellent light absorption properties, which is beneficial for increasing the short-circuit current density of the molecule. These molecules also have good charge transfer performance. The maximum absorption peak wavelengths of the designed molecules are all blue-shifted compared to the experimental molecule MDA4. The solubility of molecules MDA4-Z1 and MDA4-Z3 are similar to those of experimental molecules MDA4. The hole mobility of all designed molecules has been significantly improved compared to the experimental molecule MDA4, with MDA4-Z3 having the highest hole mobility. It is worth noting that MDA4-Z3 exhibits the best comprehensive performance among numerous designed molecules, which makes it a potential ideal HTM.
S

SunView 深度解读

该卟啉基空穴传输材料研究对阳光电源SG系列光伏逆变器具有重要参考价值。MDA4-Z3分子展现的高空穴迁移率和优异光吸收特性,可启发组件端材料优化,提升光电转换效率和短路电流密度。其蓝移吸收特性有助于拓宽光谱响应范围,配合MPPT算法可实现更精准的最大功率点跟踪。该分子设计的供体取代策略为提升光伏系统整体效率提供了材料层面的创新思路,可应用于高效组件与逆变器的协同优化开发。