← 返回
光伏发电技术 ★ 5.0

探究多层太阳能光伏组件中的热动力学:揭示热点并推进创新冷却策略

Probing thermal dynamics in multi-layer solar photovoltaic modules: Unveiling hotspots and advancing innovative cooling strategies

语言:

中文摘要

摘要 太阳能光伏(PV)组件的热管理对于优化能量效率至关重要,因为温度分布不均会阻碍其性能表现。本研究探讨了由乙烯四氟乙烯(ETFE)、乙烯醋酸乙烯酯(EVA)、硅电池、聚对苯二甲酸乙二醇酯(PET)、胶带和碳纤维增强聚合物(CFRP)组成的多层光伏组件的热动力学特性。该研究创新性地结合了数值模拟、理论分析与基于太阳模拟器的实时实验验证,在平均辐照度为1000 W/m²的条件下模拟标准测试环境下的太阳辐照。数值结果表明各层表面温度相对均匀,其中电池层达到最高的平均表面温度(41.36 °C),这归因于其固有的材料特性,如高吸收效率和导热性。实验观测显示,前板(ETFE)的平均温度升至59.98 °C,可在其他多层表面中明确测量到。这些差异导致了效率的变化:数值模拟结果为15.54%,理论计算为14.05%,而实验测得效率仅为8.94%;实验效率相较于理论预测和模拟结果分别下降了36.4%和42.5%。理论模型假设理想条件,而实验结果揭示了电阻加热效应以及电流-电压(IV)曲线在后期阶段出现的电压崩溃现象。为缓解因温度升高引起的效率损失,本研究提倡采用包括相变材料、金属泡沫鳍片及基于热电的辐射冷却在内的创新冷却方案,以实现对底层的热调控,保障光伏组件的持续运行。这些发现有助于推动下一代可持续光伏技术的发展,通过优化热管理策略支持经济适用且清洁的能源(可持续发展目标SDG 7)。

English Abstract

Abstract Thermal management of solar photovoltaic (PV) modules is crucial for optimizing energy efficiency, as uneven temperature distribution hinders performance. This study investigates the thermal dynamics of multi-layer PV modules comprising ethylene tetrafluoroethylene (ETFE), ethylene vinyl acetate (EVA), silicon cells, polyethylene terephthalate (PET), tape, and carbon fibre-reinforced polymer (CFRP). The study uniquely combines numerical, theoretical, and real-time experimental validation using a solar simulator under an average of 1000 W/m 2 to mimic the solar irradiance at standard test conditions. Numerical results revealed relatively uniform surface temperatures across layers, with the cell layer reaching the highest surface average temperature (41.36 °C) attributed to its intrinsic material properties such as high adsorption efficiency and thermal conductivity. Experimental observations showed that the frontsheet (ETFE) average temperature increased to 59.98 °C, measurable among other multi-layer surfaces. These discrepancies result in efficiency variations: numerical (15.54 %), theoretical (14.05 %), and experimental (8.94 %), with the experimental efficiency showing a 36.4 % and 42.5 % reduction compared to theoretical and simulation predictions, respectively. The theoretical model assumes idealized conditions, while experimental results reveal resistive heating effects and late-stage voltage collapse in the IV curve. To mitigate temperature-induced efficiency losses, this study advocates for innovative cooling solutions, including phase change materials, metal foam fins, and thermoelectric-based radiative cooling, enabling bottom-layer thermal regulation for continuous PV operation. These findings contribute to next-generation sustainable PV technologies, supporting affordable and clean energy (SDG 7) through optimized thermal management strategies.
S

SunView 深度解读

该光伏组件热管理研究对阳光电源SG系列逆变器及智能运维具有重要价值。研究揭示的硅电池层温升至41.36°C导致效率损失42.5%的现象,可指导我们优化MPPT算法中的温度补偿策略。建议将相变材料、金属泡沫散热等创新冷却方案集成到组件级监控中,通过iSolarCloud平台实时监测热点并预测性维护。研究提出的底层热调控技术可与我们1500V系统的散热设计协同,提升高功率密度场景下的发电效率,支撑SDG7清洁能源目标。