← 返回
光伏发电技术 ★ 5.0

提高在最高太阳聚光比下聚光光伏电池的温度均匀性和发电性能

Improving the temperature uniformity and power generation of a concentrated photovoltaic cell under highest solar concentration ratios

语言:

中文摘要

摘要 聚光光伏系统(CPVs)通过将阳光聚焦到太阳能电池上来发电。提高聚光比可以在环境辐射不足时维持系统的高功率输出。对于有效面积为1 cm²的太阳能电池,室外实验中的聚光比通常不超过1,000×。本研究开发了一种新型超高压聚光光伏系统(UHCPV),能够承受高达2,500×的太阳聚光比。系统中引入了光导装置以改善光斑的均匀性。采用微通道液冷散热器和离心风扇分别对电池的上表面和下表面进行冷却。通过数值模拟和室外实验研究验证了光导装置和冷却模块的有效性。结果表明,在900×聚光比下,与仅使用微通道液冷散热器相比,电池表面最高温度从84.3 °C降低至63.0 °C。在2,500×的超高压聚光比下,电池表面最高温度达到88.2 °C。此外,还进行了室外实验,测量了聚光比在900×至2,500×范围内系统的电气性能。当聚光比为1,600×时,系统的最大电功率达到23.21 W。

English Abstract

Abstract Concentrated photovoltaic systems (CPVs) concentrate sunlight on solar cells to generate electricity. Increasing the concentration ratio can keep the system at high power output when the ambient radiation is insufficient. For solar cells with an effective area of 1 cm 2 , the concentration ratio of outdoor experiments usually does not exceed 1,000× . In this study, a novel ultra-high concentrated photovoltaic system (UHCPV) capable of withstanding a solar concentration ratio as high as 2,500× was developed. A light guide was incorporated to improve the uniformity of the light spot. A microchannel liquid cooling radiator and a centrifugal fan were used to cool the upper and lower surfaces of the cell, respectively. The effectiveness of the light guide and cooling module was demonstrated through numerical simulation and outdoor experimental research. The results indicate that at a concentration ratio of 900×, the maximum temperature of the cell surface decreased from 84.3 °C to 63.0 °C compared with that of a single microchannel liquid cooling radiator. At an ultrahigh concentration ratio of 2,500×, the maximum surface temperature reached 88.2 °C. Additionally, outdoor experiments were conducted to measure the electrical performance at concentration ratios ranging from 900× to 2,500× . When the concentration ratio was 1,600×, the maximum electrical power of the system was 23.21 W.
S

SunView 深度解读

该超高倍聚光光伏技术(2500×倍率)对阳光电源SG系列逆变器及热管理系统具有重要参考价值。研究中的微通道液冷+离心风扇双面散热方案,可借鉴至大功率PV逆变器及ST系列储能变流器的功率器件散热设计,特别是SiC/GaN器件在高功率密度应用中的温控优化。导光管提升光斑均匀性的思路,可启发MPPT算法在局部遮挡场景下的优化策略。该技术在1600×倍率下实现23.21W输出,验证了极端工况下的发电稳定性,为阳光电源开发高温、高辐照地区的专用逆变器及智能运维方案提供数据支撑。