← 返回
光伏发电技术 ★ 5.0

评估安装光伏阵列屋顶的综合节能效果及影响因素

Evaluating the comprehensive energy-saving effect of roofs equipped with photovoltaic arrays and influence factors

语言:

中文摘要

摘要 屋顶光伏(PV)系统应用广泛,通常以阵列形式部署。光伏阵列的安装参数会影响发电性能以及建筑的供暖与制冷负荷,其影响程度及内在机理尚待深入研究。本文通过耦合多物理场,建立了用于预测光伏阵列温度分布及其发电性能的模型。该模型整合了光伏阵列间歇性遮阳对屋面造成的动态热传导效应,从而实现了对安装光伏阵列屋面整体节能性能的精确评估。结果表明,倾斜布置的光伏组件之间温差可达约10 °C,主要归因于复杂且不均匀的流场分布。当安装高度增加至150 mm以上时,光伏组件间的温差可降至1 °C以下,最热组件的平均温度降低8 °C。温度降低使发电效率提升了6%。倾斜布置的光伏组件温度始终比水平布置高5∼10 °C,但倾斜布置的发电量高于水平布置。安装光伏阵列的屋面所实现的整体节能效果主要取决于发电量,其次受制冷和供暖负荷的影响,而后者在高纬度地区的作用更为显著。本方法为工程应用中光伏屋面的设计提供了有价值的指导。

English Abstract

Abstract Rooftop photovoltaic (PV) systems are widely prevalent and typically deployed in an array configuration. The installation parameters of PV arrays can affect power generation and building heating and cooling loads. The magnitude of impact and underlying mechanisms have yet to be investigated. This paper presents a predictive model for PV arrays’ temperature distribution and power generation performance by coupling multi-physical fields. This model integrates the dynamic heat transfer effects on the roof caused by the intermittent shading of PV arrays, thereby facilitating a precise assessment of the overall energy-saving performance of roofs equipped with PV arrays. The results demonstrate that the temperature difference between PV panels in tilted arrays can reach approximately 10 °C, primarily due to the complex and uneven flow field distribution. Increasing the installation height to above 150 mm minimizes the temperature difference between PV panels to less than 1 °C and reduces the average temperature of the hottest panel by 8 °C. The temperature reduction leads to a 6 % improvement in power generation efficiency. The temperature of PV panels in tilted arrays is consistently 5 ∼ 10 °C higher than that in horizontal arrays, whereas tilted arrays generate more electricity than horizontal one. The overall energy savings achieved by roofs equipped with PV arrays is mainly determined by power generation and, to a lesser extent, by cooling and heating loads, while the latter’s effects become more significant in higher latitude regions. The method provides valuable guidance for designing roofs equipped with PV arrays in engineering applications.
S

SunView 深度解读

该研究揭示光伏阵列安装参数对发电效率和建筑热负荷的耦合影响机制,对阳光电源SG系列组串逆变器和iSolarCloud平台具有重要价值。研究发现倾斜阵列温差可达10°C,安装高度超150mm可降温8°C并提升6%发电效率,这为SG逆变器的MPPT优化算法提供温度补偿依据。建议将阵列温度场分布模型集成到iSolarCloud智能运维平台,实现基于安装参数的发电量预测和散热优化建议,并为户用光伏系统设计提供安装高度和倾角的最优配置方案,提升系统综合能效。