← 返回
光伏发电技术 ★ 5.0

通过引入无毒(Zn,In)S缓冲层实现界面修饰以促进Sb2Se3薄膜太阳能电池中的电子提取

Interface modification to facilitate electron extraction by introducing a non-toxic (Zn,In)S buffer layer in Sb2Se3 thin-film solar cells

语言:

中文摘要

摘要:三硒化二锑(Sb2Se3)太阳能电池因其独特的材料特性和优异的光电功能而受到研究人员的广泛关注。基于Sb2Se3的光伏器件性能与吸收层和缓冲层之间的相互作用密切相关,二者形成的结区对整体器件效率具有决定性影响。传统上,Sb2Se3电池采用有毒且会寄生吸收光的硫化镉(CdS)作为缓冲层,这限制了其广泛应用。在本研究中,我们提出了一种替代方案,即引入一种具有组分依赖能带结构的无毒锌铟硫((Zn,In)S)缓冲层。研究发现,当铟含量最优(In/(Zn + In)比为0.11)时,(Zn,In)S层能够有效调节Sb2Se3/(Zn,In)S之间的能带排列。这种调节不仅抑制了界面处的载流子复合,还增强了载流子传输性能。在传统的Sb2Se3/CdS电池中,导带存在显著的负偏移(CBO),达0.4 eV;然而,通过引入Zn0.89In0.11S缓冲层,导带位置被抬高,使负CBO降低至更有利的0.07 eV。Zn0.89In0.11S缓冲层的引入不仅有效减小了负CBO,还在其导带与Sb2Se3的价带之间形成了更宽的带隙,从而显著降低了界面复合。模拟结果进一步验证了该策略的有效性,表明Sb2Se3/Zn0.89In0.11S电池的效率可达17.75%,相比传统Sb2Se3/CdS电池有显著提升。这一发现凸显了界面工程在提升Sb2Se3电池性能中的关键作用。

English Abstract

Abstract Antimony selenide (Sb 2 Se 3 ) solar cells have captivated the interest of researchers due to their unique material properties and promising optoelectronic functionalities. The performance of Sb 2 Se 3 -based photovoltaic devices is tied to the interplay between the absorber and buffer layers, forming a critical junction that significantly influences the overall efficiency. Traditionally, the buffer layer in Sb 2 Se 3 cells relies on toxic and parasitic light-absorbing cadmium sulfide (CdS), hindering its widespread adoption. In this work, we present an alternative approach by introducing a non-toxic zinc indium sulfide ((Zn,In)S) buffer layer with a composition-dependent energy structure. We find that the (Zn,In)S layer, with an optimal indium content (In/(Zn + In) ratio of 0.11), effectively modifies the Sb 2 Se 3 /(Zn,In)S band alignment. This modification not only suppresses carrier recombination at the interface but also enhances carrier transport. In traditional Sb 2 Se 3 /CdS cells, there is a significant negative conduction band offset (CBO) of 0.4 eV. However, by incorporating a Zn 0.89 In 0.11 S buffer layer, the conduction band is raised, reducing the negative CBO to a more favorable value of 0.07 eV. The incorporation of the Zn 0.89 In 0.11 S buffer layer not only effectively reduces the negative CBO but also creates a wider bandgap between its conduction band and the valence band of Sb 2 Se 3 , thereby significantly reducing interface recombination. Simulation results further support the effectiveness of this approach, indicating that the Sb 2 Se 3 /Zn 0.89 In 0.11 S cell efficiency can reach 17.75 %, which is a notable improvement over traditional Sb 2 Se 3 /CdS cells. This finding underscores the crucial role of interfacial engineering in boosting the Sb 2 Se 3 cell performance.
S

SunView 深度解读

该Sb2Se3薄膜电池界面工程技术对阳光电源SG系列光伏逆变器系统具有重要参考价值。通过非毒性(Zn,In)S缓冲层优化导带偏移至-0.07eV,抑制界面复合并提升载流子传输效率至17.75%,该思路可启发我司在组件-逆变器界面匹配优化、MPPT算法改进及1500V高压系统中的能量传输损耗控制。界面能带工程理念亦可应用于ST系列储能变流器的功率器件散热界面设计,通过优化SiC/GaN器件与散热基板的热阻匹配,降低界面热阻抗,提升系统转换效率与可靠性。